I pericoli del gas nell'agricoltura e nel settore agricolo 

L'agricoltura è un'industria colossale in tutto il mondo, che fornisce più di 44 milioni di posti di lavoro nell'UE e costituisce oltre il 10% dell'occupazione totale degli Stati Uniti.

Con un'ampia gamma di processi coinvolti in questo settore, è inevitabile che vi siano dei rischi da considerare. Tra questi, i rischi legati ai gas, come metano, idrogeno solforato, ammoniaca, anidride carbonica e protossido di azoto.

Il metano è un gas incolore e inodore che può avere effetti nocivi per l'uomo, causando disturbi della parola, problemi alla vista, perdita di memoria, nausea e, in casi estremi, può influire sulla respirazione e sulla frequenza cardiaca, portando potenzialmente alla perdita di coscienza e persino alla morte. Negli ambienti agricoli, si crea attraverso la digestione anaerobica di materiale organico, come il letame. La quantità di metano generata è esacerbata in aree scarsamente ventilate o ad alta temperatura, e in aree con particolare mancanza di flusso d'aria, il gas può accumularsi, rimanere intrappolato e causare esplosioni.

L'anidride carbonica (CO2) è un gas prodotto naturalmente nell'atmosfera, i cui livelli possono essere aumentati dai processi agricoli. LaCO2 può essere emessa da una serie di processi agricoli, tra cui la produzione di colture e di bestiame, ed è anche emessa da alcune attrezzature utilizzate nelle applicazioni agricole. Gli spazi di stoccaggio utilizzati per i rifiuti e le granaglie e i silos sigillati sono particolarmente preoccupanti a causa della capacità dellaCO2 di accumularsi e sostituire l'ossigeno. di accumularsi e sostituire l'ossigeno, aumentando il rischio di soffocamento sia per gli animali che per le persone.

Analogamente al metano, l'idrogeno solforato deriva dalla decomposizione anaerobica di materiale organico e può essere trovato anche in una serie di processi agricoli relativi alla produzione e al consumo di biogas. L'H2S impedisce all'ossigeno di raggiungere i nostri organi vitali e le aree in cui si accumula hanno spesso concentrazioni di ossigeno ridotte, aumentando il rischio di asfissia quando i livelli diH2Ssono elevati. Sebbene possa essere considerato più facile da individuare grazie al suo distinto odore di "uova marce", l'intensità dell'odore diminuisce in realtà a concentrazioni più elevate e a esposizioni prolungate. A livelli elevati, l'H2Spuò causare una grave irritazione e un accumulo di liquidi nei polmoni e avere un impatto sul sistema nervoso.

L'ammoniaca (NH3) è un gas presente nei rifiuti animali, che spesso vengono sparsi ed emessi ulteriormente attraverso lo spandimento di liquami sui terreni agricoli. Come per molti dei gas trattati, l'impatto dell'ammoniaca è maggiore quando manca la ventilazione. È dannosa per il benessere del bestiame e dell'uomo, in quanto provoca malattie respiratorie negli animali, mentre livelli elevati possono provocare bruciature e gonfiori delle vie respiratorie e danni polmonari nell'uomo e possono essere fatali.

L'ossido di azoto (NO2) è un altro gas da tenere presente nel settore agricolo e dell'allevamento. È presente nei fertilizzanti sintetici, spesso utilizzati nelle pratiche agricole più intensive per garantire una maggiore resa dei raccolti. I potenziali impatti negativi sulla salute dell'NO2 nell'uomo includono la riduzione della funzionalità polmonare, emorragie interne e problemi respiratori continui.

I lavoratori di questo settore sono spesso in movimento e per questo scopo specifico Crowcon offre un'ampia gamma di rilevatori di gas fissi e portatili per garantire la sicurezza dei lavoratori. La gamma portatile di Crowcon comprende T4, Gas-Pro, Clip SGD e Gasman che offrono capacità di rilevamento affidabili e trasportabili per una varietà di gas. I nostri rilevatori di gas fissi sono utilizzati nei casi in cui l'affidabilità, l'attendibilità e l'assenza di falsi allarmi sono fondamentali per una protezione efficiente ed efficace di beni e aree, e comprendono i modelli Xgard e Xgard Bright. In combinazione con una serie di rivelatori fissi, le nostre centrali di rivelazione gas offrono una gamma flessibile di soluzioni che misurano gas infiammabili, tossici e ossigeno, ne segnalano la presenza e attivano allarmi o apparecchiature associate. Gasmaster, Vortex e le centrali indirizzabili.

Per saperne di più sui rischi del gas nell'agricoltura e nel settore agricolo, visitate la nostra pagina del settore per maggiori informazioni.

Il nostro partenariato con Acutest

Sfondo

Acutest si è affermata come leader nella fornitura di strumenti di prova, riparazione e calibrazione, gestione delle risorse e servizi di formazione su misura. Acutest è un fornitore di soluzioni complete che soddisfa le esigenze di ogni cliente. Il loro team di account manager esterni supporta i clienti con una dimostrazione del prodotto in loco come parte del processo di identificazione della soluzione. Servendo in tutti i settori, compresi i servizi pubblici (operatori della rete di distribuzione), i commercianti individuali, il settore pubblico e gli elettrodomestici. Acutest è un partner di fiducia per molti settori, che hanno una base di clienti diversi tra cui i servizi di pubblica utilità, i lavori stradali e i settori ferroviari, i team di manutenzione delle strutture, la produzione, la lavorazione e gli impianti industriali, nonché i singoli appaltatori ed elettricisti.

Vista sugli analizzatori di fumi

Fornire ai lavoratori di questi settori l'attrezzatura corretta è vitale, quindi fornire a questi lavoratori uno strumento essenziale è fondamentale per Acutest. Questo strumento viene utilizzato ogni giorno; pertanto, gli analizzatori di gas di combustione Anton by Crowcon forniscono uno strumento facile da usare che rileva CO (monossido di carbonio) e NO (ossido di azoto).

Lavorare con Crowcon

Acutest è un partner a lungo termine in cui i nostri analizzatori di gas evitano agli utenti di dover conservare, caricare, trasportare, calibrare e trasportare più dispositivi. Le nostre apparecchiature permettono ai clienti di Acutest di condurre tutte le misure di prova critiche con una sola soluzione innovativa ad alte prestazioni. "La nostra partnership con Acutest ha permesso loro di fornire ai loro clienti un prodotto prontamente disponibile e affidabile, oltre al supporto clienti. Anton by Crowcon fornisce strumenti innovativi per ogni esigenza degli ingegneri ed è stato un punto di riferimento in molte occasioni".

Quanto durerà il mio sensore di gas?

I rilevatori di gas sono ampiamente utilizzati in molti settori industriali (come il trattamento delle acque, la raffineria, il petrolchimico, l'acciaio e l'edilizia, per citarne alcuni) per proteggere il personale e le apparecchiature dai gas pericolosi e dai loro effetti. Gli utenti di dispositivi portatili e fissi conoscono bene i costi potenzialmente significativi per mantenere i loro strumenti in condizioni di sicurezza durante la loro vita operativa. I sensori di gas sono intesi per fornire una misura della concentrazione di un analita di interesse, come CO (monossido di carbonio), CO2 (anidride carbonica) o NOx (ossido di azoto). I sensori di gas più utilizzati nelle applicazioni industriali sono due: elettrochimici per la misurazione dei gas tossici e dell'ossigeno e pellistori (o sfere catalitiche) per i gas infiammabili. Negli ultimi anni, l'introduzione di entrambi ossigeno e MPS (Molecular Property Spectrometer) ha permesso di migliorare la sicurezza.

Come faccio a sapere quando il mio sensore è guasto?

Ci sono stati diversi brevetti e tecniche applicate ai rivelatori di gas negli ultimi decenni che sostengono di essere in grado di determinare quando un sensore elettrochimico ha fallito. La maggior parte di queste, tuttavia, deduce solo che il sensore sta funzionando attraverso una qualche forma di stimolazione dell'elettrodo e potrebbe fornire un falso senso di sicurezza. L'unico metodo sicuro per dimostrare che un sensore sta funzionando è applicare un gas di prova e misurare la risposta: un bump test o una calibrazione completa.

Sensore elettrochimico

I sensorielettrochimici sono i più utilizzati in modalità di diffusione, in cui il gas dell'ambiente circostante entra attraverso un foro nella faccia della cella. Alcuni strumenti utilizzano una pompa per fornire aria o campioni di gas al sensore. Il foro è coperto da una membrana in PTFE che impedisce all'acqua o agli oli di entrare nella cella. Le gamme e le sensibilità dei sensori possono essere variate utilizzando fori di dimensioni diverse. I fori più grandi garantiscono una maggiore sensibilità e risoluzione, mentre quelli più piccoli riducono la sensibilità e la risoluzione ma aumentano la portata.

Fattori che influenzano la vita del sensore elettrochimico

Ci sono tre fattori principali che influenzano la vita del sensore, tra cui la temperatura, l'esposizione a concentrazioni di gas estremamente elevate e l'umidità. Altri fattori sono gli elettrodi del sensore e le vibrazioni estreme e gli shock meccanici.

Le temperature estreme possono influenzare la vita del sensore. Il produttore indicherà un intervallo di temperatura operativa per lo strumento: tipicamente da -30˚C a +50˚C. I sensori di alta qualità saranno comunque in grado di sopportare escursioni temporanee oltre questi limiti. Una breve (1-2 ore) esposizione a 60-65˚C per i sensori H2S o CO (per esempio) è accettabile, ma incidenti ripetuti provocheranno l'evaporazione dell'elettrolita e spostamenti nella lettura di base (zero) e una risposta più lenta.

Anche l'esposizione a concentrazioni di gas estremamente elevate può compromettere le prestazioni del sensore. I sensori elettrochimici sono tipicamente testati dall'esposizione fino a dieci volte il loro limite di progetto. I sensori costruiti con materiale catalizzatore di alta qualità dovrebbero essere in grado di resistere a tali esposizioni senza cambiamenti nella chimica o perdita di prestazioni a lungo termine. I sensori con un carico di catalizzatore inferiore possono subire danni.

L'influenza più considerevole sulla vita del sensore è l'umidità. La condizione ambientale ideale per i sensori elettrochimici è 20˚Celsius e 60% RH (umidità relativa). Quando l'umidità ambientale aumenta oltre il 60%RH, l'acqua viene assorbita nell'elettrolita causandone la diluizione. In casi estremi il contenuto di liquido può aumentare di 2-3 volte, provocando potenzialmente una perdita dal corpo del sensore e quindi attraverso i pin. Al di sotto del 60%RH l'acqua nell'elettrolito inizierà a disidratarsi. Il tempo di risposta può essere significativamente esteso come l'elettrolita o disidratato. Gli elettrodi del sensore possono, in condizioni insolite, essere avvelenati da gas interferenti che adsorbono sul catalizzatore o reagiscono con esso creando sottoprodotti che inibiscono il catalizzatore.

Le vibrazioni estreme e gli urti meccanici possono anche danneggiare i sensori rompendo le saldature che legano insieme gli elettrodi di platino, le strisce di collegamento (o i fili in alcuni sensori) e i perni.

Aspettativa di vita "normale" del sensore elettrochimico

I sensori elettrochimici per i gas comuni come il monossido di carbonio o il solfuro di idrogeno hanno una vita operativa tipicamente dichiarata di 2-3 anni. Sensori di gas più esotici come il fluoruro di idrogeno possono avere una vita di soli 12-18 mesi. In condizioni ideali (temperatura e umidità stabili nella regione di 20˚C e 60%RH) senza incidenza di contaminanti, i sensori elettrochimici sono noti per funzionare più di 4000 giorni (11 anni). L'esposizione periodica al gas bersaglio non limita la vita di queste piccole celle a combustibile: i sensori di alta qualità hanno una grande quantità di materiale catalizzatore e conduttori robusti che non si esauriscono con la reazione.

Sensore a pellistor

I sensoria pellistore sono costituiti da due bobine di filo abbinate, ciascuna inserita in una perla di ceramica. La corrente viene fatta passare attraverso le bobine, riscaldando le perle a circa 500˚C. Il gas infiammabile brucia sulla perlina e il calore aggiuntivo generato produce un aumento della resistenza della bobina che viene misurata dallo strumento per indicare la concentrazione del gas.

Fattori che influenzano la durata del sensore a pellistor

I due fattori principali che influenzano la vita del sensore sono l'esposizione ad un'alta concentrazione di gas e il bilanciamento o l'inibizione del sensore. Anche gli urti meccanici estremi o le vibrazioni possono influenzare la vita del sensore. La capacità della superficie del catalizzatore di ossidare il gas si riduce quando è stata avvelenata o inibita. Una durata del sensore superiore ai dieci anni è comune nelle applicazioni in cui non sono presenti composti inibitori o avvelenanti. I pellistori più potenti hanno una maggiore attività catalitica e sono meno vulnerabili all'avvelenamento. Le perle più porose hanno anche una maggiore attività catalitica in quanto il loro volume superficiale è aumentato. Un'abile progettazione iniziale e sofisticati processi di fabbricazione assicurano la massima porosità delle perle. L'esposizione ad alte concentrazioni di gas (>100%LEL) può anche compromettere le prestazioni del sensore e creare un offset nel segnale zero/linea di base. Una combustione incompleta porta a depositi di carbonio sul tallone: il carbonio "cresce" nei pori e crea danni meccanici. Il carbonio può comunque essere bruciato nel tempo per far riemergere i siti catalitici. Urti meccanici estremi o vibrazioni possono in rari casi causare anche una rottura delle bobine del pellistore. Questo problema è più prevalente nei rivelatori di gas portatili piuttosto che in quelli a punto fisso, poiché è più probabile che cadano, e i pellistori utilizzati sono a bassa potenza (per massimizzare la durata della batteria) e quindi utilizzano bobine di filo più sottili e delicate.

Come faccio a sapere quando il mio sensore è guasto?

Un pellistor che è stato avvelenato rimane elettricamente operativo ma può non rispondere al gas. Quindi il rivelatore di gas e il sistema di controllo possono sembrare in uno stato sano, ma una perdita di gas infiammabile può non essere rilevata.

Sensore di ossigeno

Icona Lunga Vita 02

Il nostro nuovo sensore di ossigeno senza piombo e di lunga durata non ha fili di piombo compressi che l'elettrolita deve penetrare, permettendo l'uso di un elettrolita spesso che significa nessuna perdita, nessuna corrosione indotta da perdite e una maggiore sicurezza. La robustezza aggiuntiva di questo sensore ci permette di offrire con fiducia una garanzia di 5 anni per una maggiore tranquillità.

I sensori diossigeno a lunga durata hanno una durata di vita di 5 anni, con tempi di inattività ridotti, costi di gestione inferiori e un impatto ambientale ridotto. Misurano con precisione l'ossigeno in un'ampia gamma di concentrazioni, dallo 0 al 30% del volume, e rappresentano la nuova generazione di sensori di gas O2.

Sensore MPS

MPS Il sensore offre una tecnologia avanzata che elimina la necessità di calibrare e fornisce un "vero LEL (limite inferiore di esplosività)" per la lettura di quindici gas infiammabili, ma è in grado di rilevare tutti i gas infiammabili in un ambiente multispecie, con conseguenti minori costi di manutenzione continua e una ridotta interazione con l'unità. Ciò riduce il rischio per il personale ed evita costosi tempi di inattività. Il sensore MPS è inoltre immune all'avvelenamento del sensore.  

Il guasto del sensore dovuto all'avvelenamento può essere un'esperienza frustrante e costosa. La tecnologia del sensore MPS™non è influenzata dai contaminanti presenti nell'ambiente. I processi che presentano contaminazioni hanno ora accesso a una soluzione che funziona in modo affidabile con un design a prova di guasto per avvisare l'operatore e offrire la massima tranquillità al personale e ai beni situati in ambienti pericolosi. È ora possibile rilevare più gas infiammabili, anche in ambienti difficili, utilizzando un solo sensore che non richiede calibrazione e ha una durata prevista di almeno 5 anni.