Une brève histoire de la détection de gaz 

L'évolution de la détection des gaz a considérablement changé au fil des ans. Des idées nouvelles et innovantes, des canaris aux équipements de surveillance portables, permettent aux travailleurs de bénéficier d'une surveillance continue et précise des gaz.

La révolution industrielle a été le catalyseur du développement de la détection des gaz en raison de l'utilisation de combustibles très prometteurs, comme le charbon. Comme le charbon peut être extrait de la terre par l'exploitation minière ou souterraine, les outils tels que les casques et les lampes à flamme étaient leur seule protection contre les dangers de l'exposition au méthane sous terre qui restaient à découvrir. Le méthane étant incolore et inodore, il est difficile d'en connaître la présence jusqu'à ce que l'on découvre un ensemble de problèmes de santé notables. Les risques d'exposition au gaz ont conduit à expérimenter des méthodes de détection afin de préserver la sécurité des travailleurs pour les années à venir.

Un besoin de détection des gaz

Une fois l'exposition au gaz devenue évidente, les mineurs ont compris qu'ils devaient savoir si la mine contenait une poche de méthane à l'endroit où ils travaillaient. Au début du 19e siècle, le premier détecteur de gaz a été enregistré. De nombreux mineurs portaient des lampes à flamme sur leur casque pour pouvoir voir pendant qu'ils travaillaient, il était donc primordial de pouvoir détecter le méthane extrêmement inflammable. Le travailleur portait une épaisse couverture humide sur le corps et une longue mèche dont l'extrémité était enflammée. En entrant dans les mines, l'individu déplaçait la flamme autour et le long des murs à la recherche de poches de gaz. Si elle en trouvait, une réaction s'enflammait et était signalée à l'équipe pendant que la personne qui détectait était protégée de la couverture. Avec le temps, des méthodes plus avancées de détection de gaz ont été développées.

L'introduction des canaris

La détection des gaz est passée de l'homme au canari, en raison de ses gazouillis sonores et de son système nerveux similaire pour le contrôle de la respiration. Les canaris étaient placés dans certaines zones de la mine, d'où les travailleurs vérifiaient les canaris pour en prendre soin et voir si leur santé avait été affectée. Pendant les périodes de travail, les mineurs écoutaient le gazouillis des canaris. Si un canari commence à secouer sa cage, c'est un indicateur fort d'une exposition à une poche de gaz qui a commencé à affecter sa santé. Les mineurs évacuaient alors la mine en précisant qu'il était dangereux d'y pénétrer. Parfois, si le canari cessait complètement de gazouiller, les mineurs savaient qu'il fallait sortir plus rapidement avant que l'exposition au gaz n'ait le temps d'affecter leur santé.

La lumière de la flamme

La lampe à flamme était l'évolution suivante pour la détection de gaz dans la mine, suite aux inquiétudes concernant la sécurité des animaux. Tout en fournissant de la lumière aux mineurs, la flamme était logée dans une coque anti-flamme qui absorbait toute chaleur et capturait la flamme pour l'empêcher d'enflammer le méthane éventuellement présent. La coque extérieure contenait une pièce de verre avec trois incisions horizontales. La ligne du milieu correspondait à l'environnement gazeux idéal, tandis que la ligne du bas indiquait un environnement pauvre en oxygène, et la ligne du haut indiquait une exposition au méthane ou un environnement enrichi en oxygène. Les mineurs allumaient la flamme dans un environnement d'air frais. Si la flamme baissait ou commençait à mourir, cela indiquait que l'atmosphère avait une faible concentration d'oxygène. Si la flamme grossissait, les mineurs savaient que du méthane était présent avec de l'oxygène, les deux cas indiquant qu'ils devaient quitter la mine.

Le capteur catalytique

Bien que la lampe à flamme ait constitué un progrès dans la technologie de détection des gaz, elle ne constituait pas une approche universelle pour toutes les industries. C'est pourquoi le capteur catalytique a été le premier détecteur de gaz qui s'apparente à la technologie moderne. Ces capteurs fonctionnent selon le principe suivant : lorsqu'un gaz s'oxyde, il produit de la chaleur. Le capteur catalytique fonctionne grâce au changement de température, qui est proportionnel à la concentration de gaz. Bien qu'il s'agisse d'un pas en avant dans le développement de la technologie nécessaire à la détection de gaz, il fallait au départ une opération manuelle pour obtenir un relevé.

La technologie moderne

La technologie de la détection de gaz s'est énormément développée depuis le début du XIXe siècle, époque à laquelle le premier détecteur de gaz a été enregistré. Aujourd'hui, plus de cinq types de capteurs différents sont couramment utilisés dans tous les secteurs d'activité, dont les suivants Électrochimique, les perles catalytiques (Pellistor), Détecteur à photoionisation (PID) et Technologie infrarouge (IR), ainsi que les capteurs les plus modernes Spectromètre de propriétés moléculaires™ (MPS) et Oxygène à longue durée de vie (LLO2), les détecteurs de gaz modernes sont très sensibles, précis et surtout fiables, ce qui permet à tout le personnel de rester en sécurité et de réduire le nombre d'accidents mortels sur le lieu de travail.

Qu'est-ce qu'un détecteur de flammes et comment fonctionne-t-il ?

Qu'est-ce qu'un détecteur de flammes ??

Un détecteur de flamme est un type de capteur capable de détecter et de réagir à la présence d'une flamme. Ces détecteurs ont la capacité d'identifier le liquide sans fumée et la fumée qui peut créer un feu ouvert. Par exemple, les détecteurs de flamme sont largement utilisés dans les chaudières, car un détecteur de flamme peut détecter la chaleur, la fumée et le feu. Ces appareils peuvent également détecter le feu en fonction de la température et du mouvement de l'air. Les détecteurs de flammes utilisent la technologie des ultraviolets (UV) ou des infrarouges (IR) pour identifier les flammes, ce qui signifie qu'ils peuvent donner l'alerte en moins d'une seconde. Le détecteur de flammes réagit à la détection d'une flamme en fonction de son installation, il peut par exemple déclencher une alarme, désactiver la conduite de carburant ou même activer un système d'extinction d'incendie.

Où trouver ces détecteurs ? 

  • Entrepôts industriels
  • Installations de production chimique
  • Magasins de produits chimiques
  • Stations de stockage et de pompage d'essence
  • Ateliers de soudage à l'arc
  • Centrales électriques
  • Postes de transformation
  • Tunnels souterrains
  • Bancs d'essai de moteurs
  • Magasins de bois

Quels sont les composants d'un système de surveillance de la flamme et comment fonctionne-t-il ?

Le composant principal d'un système de détection de flamme est le détecteur lui-même. Il comprend des circuits de détection photoélectriques, des circuits de conditionnement du signal, des systèmes à microprocesseur, des circuits d'entrée/sortie et des systèmes de refroidissement du vent. Les capteurs du détecteur de flamme détectent le rayonnement émis par la flamme, le circuit photoélectrique convertit le signal d'intensité du rayonnement de la flamme en un signal de tension pertinent et ce signal est traité dans un micro-ordinateur monopuce et converti en une sortie souhaitée.

Combien de types de détecteurs de flamme existe-t-il et comment fonctionnent-ils ? 

Il existe 3 types différents de détecteurs de flammes : Ultra-Violet, Infra-Rouge et une combinaison des deux : Ultra-Violet-Infra-Rouge.

Ultra-Violet (UV)

Ce type de détecteur de flamme fonctionne en détectant le rayonnement UV au point d'allumage. Presque tous les incendies émettent des radiations UV, de sorte qu'en cas de flamme, le capteur s'en aperçoit et produit une série d'impulsions qui sont converties par l'électronique du détecteur en une sortie d'alarme.

Un détecteur UV présente des avantages et des inconvénients. Les avantages d'un détecteur UV incluent une réponse rapide, la capacité de répondre aux feux d'hydrocarbures, d'hydrogène et de métal. D'autre part, les inconvénients des détecteurs UV incluent la réponse à la soudure à longue distance, et ils peuvent également répondre aux éclairs, aux étincelles, etc.

Infra-Rouge (IR)

Le détecteur de flamme à infrarouge fonctionne en vérifiant la bande spectrale infrarouge à la recherche de certains oripeaux que les gaz chauds dégagent. Toutefois, ce type d'appareil nécessite un mouvement de vacillement de la flamme. Le rayonnement infrarouge peut être émis non seulement par les flammes, mais aussi par les fours, les lampes, etc. Le risque de fausse alarme est donc plus élevé.

UV-IR

Ce type de détecteur est capable de détecter à la fois les radiations UV et IR, il possède donc à la fois le capteur UV et IR. Les deux capteurs fonctionnent individuellement de la même manière que ceux décrits, mais les deux circuits supplémentaires traitent les signaux présents du fait de la présence des deux capteurs. Par conséquent, le détecteur combiné a une meilleure capacité de rejet des fausses alarmes que le détecteur UV ou IR individuel.

Bien qu'il existe des avantages et des inconvénients du détecteur de flamme UV/IR. Les avantages comprennent une réponse rapide et une immunité contre les fausses alarmes. D'autre part, les inconvénients du détecteur de flammes UV/IR incluent le fait qu'il ne peut pas être utilisé pour les incendies sans carbone et qu'il ne peut détecter que les incendies qui émettent à la fois le rayonnement UV/IR et pas individuellement.

Des produits sont-ils disponibles ? 

Le FGard IR3 offre des performances supérieures dans la détection des feux d'hydrocarbures. L'appareil utilise les derniers algorithmes de détection de flamme IR pour garantir une immunité maximale aux fausses alarmes. Le détecteur a été testé indépendamment pour démontrer qu'il peut détecter un feu de casserole d'hydrocarbure à près de 200 pieds en moins de 5 secondes. Le FGuard IR3 possède un IR multi-spectre permettant une portée de détection de flamme de 60 mètres. Cela permet de détecter tous les feux d'hydrocarbures sans formation de condensation sur la fenêtre, ce qui améliore la fiabilité et les performances quelle que soit la température. Ce produit a un temps de détection rapide répondant en moins de 5 secondes à un feu de 0,1m² à 60 mètres.

Crowcon propose une gamme de détecteurs de flammes à infrarouge (IR) et à ultraviolet (UV) permettant de détecter rapidement les flammes à distance. Selon le modèle, cela inclut une variété de feux de gaz et de carburant, y compris ceux générés par des hydrocarbures, de l'hydrogène, des métaux, des sources inorganiques et hydroxylées.

Les dangers de l'hydrogène

En tant que combustible, l'hydrogène est hautement inflammable et les fuites génèrent un risque sérieux d'incendie. Toutefois, les incendies d'hydrogène sont sensiblement différents des incendies impliquant d'autres combustibles. Lorsque des carburants et des hydrocarbures plus lourds, comme l'essence ou le diesel, fuient, ils s'accumulent près du sol. En revanche, l'hydrogène est l'un des éléments les plus légers de la planète, de sorte que lorsqu'une fuite se produit, le gaz se disperse rapidement vers le haut. Cela rend l'inflammation moins probable, mais une autre différence est que l'hydrogène s'enflamme et brûle plus facilement que l'essence ou le diesel. En fait, même une étincelle d'électricité statique provenant du doigt d'une personne suffit à déclencher une explosion lorsqu'il y a de l'hydrogène. La flamme d'hydrogène est également invisible, il est donc difficile de localiser le "feu" réel, mais elle génère une faible chaleur rayonnante en raison de l'absence de carbone et a tendance à se consumer rapidement.

L'hydrogène est inodore, incolore et insipide, de sorte que les fuites sont difficiles à détecter par les seuls sens humains. L'hydrogène n'est pas toxique, mais dans les environnements intérieurs tels que les salles de stockage des batteries, il peut s'accumuler et provoquer une asphyxie en remplaçant l'oxygène. Ce danger peut être compensé dans une certaine mesure en ajoutant des substances odorantes au carburant hydrogène, ce qui lui confère une odeur artificielle et alerte les utilisateurs en cas de fuite. Mais comme l'hydrogène se disperse rapidement, il est peu probable que l'odorisant voyage avec lui. L'hydrogène qui fuit à l'intérieur s'accumule rapidement, d'abord au niveau du plafond, puis finit par remplir la pièce. Par conséquent, l'emplacement des détecteurs de gaz est essentiel à la détection précoce d'une fuite.

L'hydrogène est généralement stocké et transporté dans des réservoirs d'hydrogène liquéfié. La dernière préoccupation est que, parce qu'il est comprimé, l'hydrogène liquide est extrêmement froid. Si l'hydrogène s'échappe de son réservoir et entre en contact avec la peau, il peut provoquer de graves gelures, voire la perte de certaines extrémités.

Quelle technologie de capteur est la meilleure pour détecter l'hydrogène ?

Crowcon dispose d'une large gamme de produits pour la détection de l'hydrogène. Les technologies traditionnelles de détection des gaz inflammables sont les pellistors et l'infrarouge (IR). Les capteurs de gaz à pellistors (également appelés capteurs de gaz à perles catalytiques) sont la principale technologie de détection des gaz inflammables depuis les années 1960. Vous pouvez en savoir plus sur les capteurs à pellistors sur notre page de solutions. Cependant, leur principal inconvénient est que dans les environnements à faible teneur en oxygène, les capteurs à pellistors ne fonctionnent pas correctement et peuvent même tomber en panne. Dans certaines installations, les pellistors risquent d'être empoisonnés ou inhibés, ce qui laisse les travailleurs sans protection. De plus, les capteurs à pellistors ne sont pas à sécurité intégrée, et une défaillance du capteur ne sera pas détectée à moins d'appliquer un gaz d'essai.

Les capteurs de type infrarouge constituent un moyen fiable de détecter les hydrocarbures inflammables dans les environnements à faible teneur en oxygène. Ils ne sont pas susceptibles d'être empoisonnés, de sorte que l'IR peut considérablement améliorer la sécurité dans ces conditions. Pour en savoir plus sur les capteurs IR, consultez notre page de solutions, et sur les différences entre les pellistors et les capteurs IR, consultez le blog suivant.

Tout comme les pellistors sont sensibles à l'empoisonnement, les capteurs IR sont sensibles aux chocs mécaniques et thermiques sévères et sont également fortement affectés par les changements de pression importants. De plus, les capteurs IR ne peuvent pas être utilisés pour détecter l'hydrogène. La meilleure option pour la détection des gaz inflammables à l'hydrogène est donc la technologie des capteurs MPS™ (molecular property spectrometer). Celle-ci ne nécessite pas d'étalonnage tout au long du cycle de vie du capteur, et comme la MPS détecte les gaz inflammables sans risque d'empoisonnement ou de fausses alarmes, elle permet de réaliser des économies considérables sur le coût total de possession et de réduire les interactions avec les unités, ce qui se traduit par une tranquillité d'esprit et moins de risques pour les opérateurs. La détection de gaz par spectromètre de propriété moléculaire a été développée à l'Université du Nevada et est actuellement la seule technologie de détection de gaz capable de détecter plusieurs gaz inflammables, y compris l'hydrogène, simultanément, de manière très précise et avec un seul capteur.

Lisez notre livre blanc pour en savoir plus sur notre technologie de capteur MPS, et pour plus d'informations sur la détection de l'hydrogène gazeux, visitez notre page sur l'industrie et jetez un coup d'œil à certaines de nos autres ressources sur l'hydrogène :

Que devez-vous savoir sur l'hydrogène ?

Hydrogène vert - Vue d'ensemble

Blue Hydrogen - Une vue d'ensemble

Xgard Bright MPS assure la détection de l'hydrogène dans une application de stockage d'énergie

Les implants en silicone dégradent-ils votre détection de gaz ?

En termes de détection de gaz, les pellistors sont la principale technologie de détection des gaz inflammables depuis les années 60. Dans la plupart des cas, avec un entretien correct, les pellistors sont un moyen fiable et rentable de surveiller les niveaux de gaz inflammables. Cependant, il existe des circonstances dans lesquelles cette technologie n'est peut-être pas le meilleur choix, et la technologie infrarouge (IR) doit être envisagée à la place.

Continuer la lecture "Les implants en silicone dégradent-ils votre détection des gaz ?"