Identificación de fugas en las tuberías de gas natural a una distancia segura

El uso del gas natural, cuyo componente principal es el metano, está aumentando en todo el mundo. También tiene muchos usos industriales, como la fabricación de productos químicos como el amoníaco, el metanol, el butano, el etano, el propano y el ácido acético; también es un ingrediente de productos tan diversos como los fertilizantes, los anticongelantes, los plásticos, los productos farmacéuticos y los tejidos.

El gas natural se transporta de varias maneras: a través de gasoductos en forma gaseosa; como gas natural licuado (GNL) o gas natural comprimido (GNC). El GNL es el método habitual para transportar el gas a distancias muy largas, como por ejemplo a través de los océanos, mientras que el GNC suele transportarse en camiones cisterna a distancias cortas. Los gasoductos son la opción preferida para el transporte de largas distancias por tierra (y a veces por mar), como entre Rusia y Europa central. Las empresas de distribución local también suministran gas natural a los usuarios comerciales y domésticos a través de redes de servicios públicos dentro de los países, regiones y municipios.

El mantenimiento regular de los sistemas de distribución de gas es esencial. Identificar y rectificar las fugas de gas es también una parte integral de cualquier programa de mantenimiento, pero es notoriamente difícil en muchos entornos urbanos e industriales, ya que las tuberías de gas pueden estar ubicadas bajo tierra, por encima de la cabeza, en los techos, detrás de las paredes y mamparos o en lugares inaccesibles, como edificios cerrados. Hasta hace poco, las sospechas de fugas en estas tuberías podían llevar a acordonar zonas enteras hasta encontrar el lugar de la fuga.

Precisamente porque los detectores de gas convencionales -como los que utilizan la combustión catalítica, la ionización de llama o la tecnología de semiconductores- no son capaces de detectar el gas a distancia y, por lo tanto, no pueden detectar las fugas de gas en las tuberías de difícil acceso, se ha investigado mucho recientemente sobre las formas de detectar el gas metano a distancia.

Detección a distancia

Actualmente se dispone de tecnologías de vanguardia que permiten detectar e identificar fugas a distancia con una precisión milimétrica. Las unidades manuales, por ejemplo, pueden detectar metano a distancias de hasta 100 metros, mientras que los sistemas montados en aviones pueden identificar fugas a medio kilómetro de distancia. Estas nuevas tecnologías están transformando la forma de detectar y tratar las fugas de gas natural.

La teledetección se consigue mediante la espectroscopia de absorción láser infrarroja. Como el metano absorbe una longitud de onda específica de la luz infrarroja, estos instrumentos emiten láseres infrarrojos. El rayo láser se dirige al lugar donde se sospecha que hay una fuga, como una tubería de gas o un techo. Como parte de la luz es absorbida por el metano, la luz recibida de vuelta proporciona una medición de la absorción por el gas. Una característica útil de estos sistemas es el hecho de que el rayo láser puede penetrar superficies transparentes, como el cristal o el plexiglás, por lo que puede ser posible comprobar un espacio cerrado antes de entrar en él. Los detectores miden la densidad media del gas metano entre el detector y el objetivo. Las lecturas de las unidades portátiles se dan en ppm-m (un producto de la concentración de la nube de metano (ppm) y la longitud del trayecto (m)). De este modo, las fugas de metano pueden confirmarse rápidamente apuntando con un rayo láser hacia la presunta fuga o a lo largo de una línea de inspección, por ejemplo.

Una diferencia importante entre la nueva tecnología y los detectores de metano convencionales es que los nuevos sistemas miden la concentración media de metano, en lugar de detectar el metano en un solo punto, lo que da una indicación más precisa de la gravedad de la fuga.

Las aplicaciones para los dispositivos portátiles incluyen:

  • Estudios de oleoductos y gasoductos
  • Planta de gas
  • Estudios de propiedades industriales y comerciales
  • Llamada de emergencia
  • Control de los gases del vertedero
  • Estudio de la superficie de la carretera

Redes municipales de distribución

Las ventajas de la tecnología a distancia para la supervisión de tuberías en entornos urbanos se están haciendo realidad.

La capacidad de los dispositivos de detección remota para controlar las fugas de gas a distancia los convierte en herramientas extremadamente útiles en caso de emergencia. Los operarios pueden mantenerse alejados de fuentes de fugas potencialmente peligrosas cuando comprueban la presencia de gas en locales cerrados o espacios confinados, ya que la tecnología les permite controlar la situación sin tener que acceder realmente. Este proceso no sólo es más fácil y rápido, sino que también es seguro. Además, no se ve afectado por otros gases presentes en la atmósfera, ya que los detectores están calibrados para detectar únicamente metano, por lo que no hay peligro de obtener señales falsas, lo cual es importante en situaciones de emergencia.

El principio de la teledetección también se aplica a la inspección de las tuberías ascendentes (las tuberías aéreas que llevan el gas a las instalaciones de los clientes y que normalmente discurren a lo largo de las paredes exteriores del edificio). En este caso, los operarios apuntan el dispositivo hacia la tubería, siguiendo su recorrido; pueden hacerlo desde el nivel del suelo, sin tener que utilizar escaleras ni acceder a las propiedades de los clientes.

Zonas peligrosas

Además de detectar fugas de gas en las redes de distribución municipales, los dispositivos a prueba de explosiones y con homologación ATEX pueden utilizarse en áreas peligrosas de la zona 1, como plantas petroquímicas, refinerías de petróleo, terminales de GNL y buques, así como en determinadas aplicaciones mineras.

Al inspeccionar un tanque subterráneo de GNL/GLP, por ejemplo, se requeriría un dispositivo a prueba de explosiones a menos de 7,5 metros del propio tanque y un metro alrededor de la válvula de seguridad. Por lo tanto, los operarios deben ser plenamente conscientes de estas restricciones y estar equipados con el tipo de equipo adecuado.

Coordinación del GPS

Algunos instrumentos permiten ahora realizar lecturas puntuales de metano en varios puntos de un emplazamiento -como una terminal de GNL-, generando automáticamente un seguimiento por GPS de las lecturas y ubicaciones de las mediciones. Esto hace que los viajes de ida y vuelta para investigaciones adicionales sean mucho más eficientes, al tiempo que proporciona un registro de buena fe de la actividad de inspección confirmada, a menudo un requisito previo para el cumplimiento de la normativa.

Detección aérea

Más allá de los dispositivos manuales, existen también detectores de metano a distancia que pueden instalarse en los aviones y que detectan las fugas de los gasoductos a lo largo de cientos de kilómetros. Estos sistemas pueden detectar los niveles de metano en concentraciones tan pequeñas como 0,5 ppm hasta 500 metros de distancia e incluyen una visualización en tiempo real de las concentraciones de gas mientras se realiza el estudio.

El funcionamiento de estos sistemas es relativamente sencillo. Se coloca un detector remoto debajo del fuselaje de la aeronave (normalmente un helicóptero). Al igual que el dispositivo de mano, la unidad produce una señal láser infrarroja, que es desviada por cualquier fuga de metano que se encuentre en su trayectoria; los niveles más altos de metano provocan una mayor desviación del haz. Estos sistemas también utilizan el GPS, por lo que el piloto puede seguir un mapa en movimiento en tiempo real de la ruta de la tubería, con una visualización en tiempo real de la trayectoria de la aeronave, las fugas de gas y la concentración (en ppm) presentada a la tripulación en todo momento. Se puede establecer una alarma sonora para una concentración de gas deseada, lo que permite al piloto acercarse para investigar más de cerca.

Conclusión:

La gama de sistemas de detección remota de metano está aumentando rápidamente, con nuevas tecnologías que se desarrollan continuamente. Todos estos dispositivos, ya sean de mano o instalados en aviones, permiten una identificación rápida, segura y muy específica de las fugas, ya sea bajo el pavimento, en una ciudad o a lo largo de cientos de kilómetros de la tundra de Alaska. Esto no sólo ayuda a evitar emisiones costosas y de poco valor, sino que también garantiza que el personal que trabaja en las tuberías o cerca de ellas no se exponga a un peligro innecesario.

Dado que el uso del gas natural está aumentando en todo el mundo, prevemos rápidos avances tecnológicos en la detección remota de gas en aplicaciones tan diversas como la inspección de fugas, la integridad de la transmisión, la gestión de plantas e instalaciones, la agricultura y la gestión de residuos, así como en aplicaciones de ingeniería de procesos como la producción de coque y acero. Cada una de estas áreas presenta situaciones en las que el acceso puede ser difícil, junto con la necesidad de dar prioridad a la protección del personal. Por tanto, las oportunidades para los detectores de metano a distancia no dejan de crecer.

 

Riesgos de explosión en tanques inertizados y cómo evitarlos

El sulfuro de hidrógeno (H2S) es conocido por ser extremadamente tóxico, además de altamente corrosivo. En un entorno de tanques inertizados, supone un peligro adicional y grave de combustión que, se sospecha, ha sido la causa de graves explosiones en el pasado.

El sulfuro de hidrógeno puede estar presente en niveles de %vol en el petróleo o el gas "agrio". El combustible también puede volverse "agrio" por la acción de las bacterias reductoras de sulfato que se encuentran en el agua de mar, a menudo presentes en las bodegas de carga de los petroleros. Por lo tanto, es importante seguir vigilando el nivel de H2S, ya que puede cambiar, especialmente en el mar. Este H2S puede aumentar la probabilidad de un incendio si la situación no se gestiona adecuadamente.

Los depósitos suelen estar revestidos de hierro (a veces recubierto de zinc). El hierro se oxida, creando óxido de hierro (FeO). En un espacio de cabeza inerte de un tanque, el óxido de hierro puede reaccionar con el H2S para formar sulfuro de hierro (FeS). El sulfuro de hierro es un piróforo, lo que significa que puede inflamarse espontáneamente en presencia de oxígeno.

Excluyendo los elementos del fuego

Un depósito lleno de aceite o gas es un riesgo de incendio evidente si se dan las circunstancias adecuadas. Los tres elementos del fuego son el combustible, el oxígeno y una fuente de ignición. Sin estos tres elementos, el fuego no puede iniciarse. El aire tiene alrededor de un 21% de oxígeno. Por lo tanto, un medio habitual para controlar el riesgo de incendio en una cisterna es eliminar la mayor cantidad de aire posible, expulsando el aire de la cisterna con un gas inerte, como el nitrógeno o el dióxido de carbono. Durante la descarga del tanque, se procura sustituir el combustible por gas inerte en lugar de aire. Esto elimina el oxígeno y evita que se inicie el fuego.

Por definición, en un entorno inerte no hay suficiente oxígeno para que se produzca un incendio. Pero en algún momento habrá que dejar entrar aire en el tanque, por ejemplo, para que el personal de mantenimiento entre con seguridad. Ahora existe la posibilidad de que se junten los tres elementos del fuego. ¿Cómo se puede controlar?

  • Hay que dejar entrar el oxígeno
  • Puede haber presencia de FeS, que el oxígeno hará chispear
  • El elemento que se puede controlar es el combustible.

Si se ha eliminado todo el combustible y la combinación de aire y FeS provoca una chispa, no puede hacer ningún daño.

Control de los elementos

De lo anterior se desprende la importancia de controlar todos los elementos que pueden provocar un incendio en estos depósitos de combustible. El oxígeno y el combustible pueden controlarse directamente con un detector de gas adecuado, como Gas-Pro TK. Diseñado para estos entornos especializados, Gas-Pro TK hace frente automáticamente a la medición de un depósito lleno de gas (medido en %vol) y un depósito casi vacío de gas (medido en %LEL). Gas-Pro TK puede indicarle cuándo los niveles de oxígeno son lo suficientemente bajos como para que sea seguro cargar combustible o lo suficientemente altos como para que el personal pueda entrar en el depósito con seguridad. Otro uso importante de Gas-Pro TK es la monitorización de H2S, para permitirle juzgar la presencia probable del prióforo, sulfuro de hierro.

El mantenimiento de la seguridad... Una visita a la refinería de petróleo

Trabajar en la oficina hace que sea fácil centrarse en las tareas individuales y desentenderse de cómo nuestros productos marcan la diferencia en la vida de las personas. Uno de nuestros clientes tuvo la amabilidad de facilitar una visita in situ para que Andrea (nuestra futura líder de Halma en prácticas de marketing) pudiera ver de primera mano cómo se utilizan nuestros productos y quiénes son los usuarios finales. Esto significó una visita a una refinería de petróleo para ver dónde se utilizan nuestros detectores de gas portátiles Crowcon.


"Lo que más me sorprendió fue el gran tamaño de las instalaciones. La refinería de petróleo estaba muy espaciada y tardamos 10 minutos en ir a pie desde la entrada del emplazamiento hasta el lugar donde se encontraba el ingeniero de Crowcon. Los ingenieros y los empleados de las diferentes partes de la refinería llevaban chaquetas de alta visibilidad, grandes botas de seguridad, cascos y todos parecían tener detectores de gas personales. Durante una rápida visita a las instalaciones, me enteré de que los productos de la refinería de petróleo no se limitan al gas o la gasolina, sino también al alquitrán, el asfalto, los lubricantes, el detergente, la parafina y mucho más.

Todos los productos se almacenan en grandes contenedores con tuberías por todo el recinto. La mayoría de los productos son muy inflamables, lo que explica la gran atención que se presta a la seguridad. A lo lejos, hay unos cuantos contenedores en forma de cúpula que son recipientes presurizados. Si uno de ellos explotara, tendría un radio de explosión de 16 kilómetros. De repente, tuve el impulso de salir y conducir unos 15 kilómetros.

La base de ingenieros de Crowcon estaba llena de T4 naranjas, Gas-Pros, así como de un ejército de "Daleks", quiero decir Detectives, a la espera de calibración y servicio. Aunque la dureza de este entorno industrial era evidente por su aspecto, por lo demás estaban en buen estado de funcionamiento, y el ingeniero de servicio trabajó con los dispositivos rápidamente.

Los usuarios finales los consideran un dispositivo sencillo que tienen que llevar para hacer su trabajo, y les gusta la sencillez y la fiabilidad de los dispositivos Crowcon. Los Detectives se tiran por ahí y los Gas-Pros son casi negros en comparación con el naranja habitual, lo que demuestra lo importante que es la robustez de nuestros dispositivos. Los peligros de este entorno de trabajo no suelen ser una gran preocupación para los usuarios, esto es la vida cotidiana para ellos. Nuestros dispositivos les ayudan a volver a casa después de un duro turno. Garantizar el buen funcionamiento de los dispositivos depende de los ingenieros de servicio, que deben pensar en los usuarios para asegurarse de que los dispositivos se utilizan correctamente.

Ver cómo se utilizan los dispositivos de Crowcon y el número de veces que alguien preguntó si los dispositivos estaban calibrados y listos para entrar en acción, puso de manifiesto lo importante que se considera el uso de los portátiles como parte del régimen de seguridad. "Calidad" y "robustez" es la forma en que los usuarios describen los productos de Crowcon y, aunque ahora los traten como los dispositivos que salvan vidas que son, los dispositivos se utilizan y valoran regularmente. Hacen de un entorno muy inflamable y peligroso un lugar más seguro".

Datos sobre la detección fija

La colocación óptima de los detectores de gas fijos requiere una evaluación exhaustiva de los riesgos. Este breve vídeo destaca algunas de las preguntas que debe plantearse antes de comprar o instalar un sistema fijo en su planta o emplazamiento.

Continuar leyendo "Datos sobre la detección fija"

La sencilla guía de Chris sobre la tecnología de comunicación para la detección de gases

La aparición de las tecnologías digitales y de comunicación permite comunicar mucha más información a un sistema de control, con la ventaja añadida de reducir los costes de cableado. Por ello, he pensado que podría ser útil ofrecer una visión general de las distintas tecnologías disponibles.

Continuar leyendo "La sencilla guía de Chris sobre la tecnología de comunicación para la detección de gases"