Qual è la differenza tra un pellistor e un sensore IR?

I sensori giocano un ruolo chiave quando si tratta di monitorare gas e vapori infiammabili. Ambiente, tempo di risposta e intervallo di temperatura sono solo alcune delle cose da considerare quando si decide quale tecnologia è migliore.

In questo blog, evidenziamo le differenze tra i sensori a pellistor (catalitici) e i sensori a infrarossi (IR), perché ci sono pro e contro di entrambe le tecnologie, e come sapere quale è meglio per adattarsi a diversi ambienti.

Sensore a pellistor

Un sensore di gas a pellistor è un dispositivo utilizzato per rilevare gas o vapori combustibili che rientrano nella gamma esplosiva per avvertire di livelli di gas in aumento. Il sensore è una bobina di filo di platino con un catalizzatore inserito all'interno per formare una piccola perla attiva che abbassa la temperatura alla quale il gas si accende intorno ad essa. Quando è presente un gas combustibile, la temperatura e la resistenza della perlina aumentano rispetto alla resistenza della perlina inerte di riferimento. La differenza di resistenza può essere misurata, permettendo la misurazione del gas presente. A causa dei catalizzatori e delle perle, un sensore a pellistor è anche conosciuto come un sensore catalitico o a perle catalitiche.

Creati originariamente negli anni '60 dallo scienziato e inventore britannico Alan Baker, i sensori a pellistor sono stati inizialmente progettati come una soluzione alla lunga tecnica delle lampade di sicurezza a fiamma e dei canarini. Più recentemente, i dispositivi sono utilizzati in applicazioni industriali e sotterranee come miniere o tunnel, raffinerie di petrolio e piattaforme petrolifere.

I sensori a pellistor sono relativamente meno costosi a causa delle differenze nel livello di tecnologia rispetto ai sensori IR, tuttavia può essere necessario sostituirli più frequentemente.

Con un'uscita lineare corrispondente alla concentrazione di gas, i fattori di correzione possono essere utilizzati per calcolare la risposta approssimativa dei pellistori ad altri gas infiammabili, il che può rendere i pellistori una buona scelta quando sono presenti più vapori infiammabili.

Non solo questo, ma i pellistori all'interno di rilevatori fissi con uscite a ponte mV come l'Xgard tipo 3 sono molto adatti a zone difficili da raggiungere, poiché le regolazioni di calibrazione possono avvenire sul pannello di controllo locale.

D'altra parte, i pellistori lottano in ambienti dove c'è poco o niente ossigeno, poiché il processo di combustione con cui funzionano, richiede ossigeno. Per questo motivo, gli strumenti per spazi confinati che contengono sensori LEL a pellistori catalitici spesso includono un sensore per misurare l'ossigeno.

In ambienti in cui i composti contengono silicio, piombo, zolfo e fosfati, il sensore è suscettibile di avvelenamento (perdita irreversibile della sensibilità) o inibizione (perdita reversibile della sensibilità), che può essere un pericolo per le persone sul posto di lavoro.

Se esposti ad alte concentrazioni di gas, i sensori a pellistor possono essere danneggiati. In tali situazioni, i pellistori non sono "fail safe", il che significa che non viene data alcuna notifica quando viene rilevato un guasto dello strumento. Qualsiasi guasto può essere identificato solo attraverso il bump test prima di ogni utilizzo per garantire che le prestazioni non vengano degradate.

 

Sensore IR

La tecnologia dei sensori a infrarossi si basa sul principio che la luce infrarossa (IR) di una particolare lunghezza d'onda sarà assorbita dal gas bersaglio. Tipicamente ci sono due emettitori all'interno di un sensore che generano fasci di luce IR: un fascio di misurazione con una lunghezza d'onda che sarà assorbita dal gas bersaglio, e un fascio di riferimento che non sarà assorbito. Ogni fascio è di uguale intensità e viene deviato da uno specchio all'interno del sensore su un foto-ricevitore. La differenza di intensità risultante, tra il fascio di riferimento e quello di misurazione, in presenza del gas bersaglio è usata per misurare la concentrazione del gas presente.

In molti casi, la tecnologia dei sensori a infrarossi (IR) può avere una serie di vantaggi rispetto ai pellistori o essere più affidabile in aree in cui le prestazioni dei sensori basati sui pellistori possono essere compromesse, compresi gli ambienti poveri di ossigeno e inerti. Solo il fascio di infrarossi interagisce con le molecole di gas circostanti, dando al sensore il vantaggio di non affrontare la minaccia di avvelenamento o inibizione.

La tecnologia IR fornisce test a prova di errore. Questo significa che se il raggio infrarosso dovesse fallire, l'utente verrebbe avvisato di questo guasto.

Gas-Pro TK utilizza un doppio sensore IR, la tecnologia migliore per gli ambienti specializzati in cui i rilevatori di gas standard non funzionano, sia per lo spurgo dei serbatoi che per la liberazione dei gas.

Un esempio di uno dei nostri rilevatori a infrarossi è il Crowcon Gas-Pro IR, ideale per l'industria petrolifera e del gas, con la possibilità di rilevare metano, pentano o propano in ambienti potenzialmente esplosivi e a basso contenuto di ossigeno, dove i sensori a pellistor potrebbero avere difficoltà. Nel nostro Gas-Pro TK utilizziamo anche un sensore a doppia gamma %LEL e %Volume, adatto a misurare e passare da una misura all'altra, in modo da operare sempre in sicurezza con il parametro corretto.

Tuttavia, i sensori IR non sono tutti perfetti perché hanno solo un'uscita lineare al gas bersaglio; la risposta di un sensore IR ad altri vapori infiammabili oltre al gas bersaglio sarà non lineare.

Come i pellistori sono suscettibili all'avvelenamento, i sensori IR sono suscettibili di gravi shock meccanici e termici e anche fortemente influenzati da grossolani cambiamenti di pressione. Inoltre, i sensori a infrarossi non possono essere utilizzati per rilevare l'idrogeno gassoso, quindi suggeriamo di utilizzare pellistori o sensori elettromeccanici in questa circostanza.

L'obiettivo principale per la sicurezza è quello di selezionare la migliore tecnologia di rilevamento per ridurre al minimo i pericoli sul posto di lavoro. Speriamo che identificando chiaramente le differenze tra questi due sensori possiamo aumentare la consapevolezza su come vari ambienti industriali e pericolosi possano rimanere sicuri.

Per ulteriori indicazioni sui sensori a pellistor e IR, puoi scaricare il nostro whitepaper che include illustrazioni e diagrammi per aiutarti a determinare la migliore tecnologia per la tua applicazione.

Non troverete i sensori Crowcon che dormono sul lavoro

I sensori MOS (metal oxide semiconductor) sono stati visti come una delle soluzioni più recenti per affrontare il rilevamento dell'idrogeno solforato (H2S) in temperature fluttuanti da un massimo di 50°C fino alla metà dei venti, così come i climi umidi come il Medio Oriente.

Tuttavia, gli utenti e i professionisti del rilevamento di gas hanno capito che i sensori MOS non sono la tecnologia di rilevamento più affidabile. Questo blog spiega perché questa tecnologia può rivelarsi difficile da mantenere e quali problemi gli utenti possono affrontare.

Uno degli svantaggi principali della tecnologia è la responsabilità del sensore che "va a dormire" quando non incontra il gas per un periodo di tempo. Naturalmente, questo è un enorme rischio per la sicurezza dei lavoratori della zona... nessuno vuole trovarsi di fronte a un rilevatore di gas che alla fine non rileva il gas.

I sensori MOS richiedono un riscaldatore per equalizzare, permettendo loro di produrre una lettura coerente. Tuttavia, quando si accende inizialmente, il riscaldatore impiega del tempo per riscaldarsi, causando un ritardo significativo tra l'accensione dei sensori e la sua risposta al gas pericoloso. I produttori di MOS raccomandano quindi agli utenti di lasciare che il sensore si equilibri per 24-48 ore prima della calibrazione. Alcuni utenti possono trovare questo un ostacolo per la produzione, così come un tempo prolungato per l'assistenza e la manutenzione.

Il ritardo del riscaldatore non è l'unico problema. Utilizza un sacco di potenza che pone un ulteriore problema di drammatici cambiamenti di temperatura nel cavo di alimentazione DC, causando cambiamenti di tensione come la testa del rivelatore e imprecisioni nella lettura del livello di gas. 

Come suggerisce il suo nome di semiconduttore di ossido di metallo, i sensori sono basati su semiconduttori che sono riconosciuti per andare alla deriva con i cambiamenti di umidità - qualcosa che non è ideale per il clima umido del Medio Oriente. In altre industrie, i semiconduttori sono spesso racchiusi in resina epossidica per evitare questo, tuttavia in un sensore di gas questo rivestimento avrebbe il meccanismo di rilevamento del gas, poiché il gas non potrebbe raggiungere il semiconduttore. Il dispositivo è anche aperto all'ambiente acido creato dalla sabbia locale in Medio Oriente, influenzando la conduttività e la precisione della lettura del gas.

Un'altra implicazione significativa per la sicurezza di un sensore MOS è che con l'uscita a livelli vicini allo zero diH2Spossono essere falsi allarmi. Spesso il sensore è usato con un livello di "soppressione dello zero" al pannello di controllo. Ciò significa che il pannello di controllo può mostrare una lettura zero per un certo tempo dopo che i livelli diH2Shanno iniziato a salire. Questa registrazione tardiva della presenza di gas a basso livello può quindi ritardare l'avviso di una grave fuga di gas, l'opportunità di evacuazione e il rischio estremo di vite umane.

I sensori MOS eccellono nel reagire rapidamente all'H2S, quindi la necessità di una sinterizzazione contrasta questo vantaggio. Poiché l'H2Sè un gas "appiccicoso", è in grado di essere adsorbito sulle superfici, comprese quelle dei sinterizzatori, rallentando così la velocità con cui il gas raggiunge la superficie di rilevamento.

Per ovviare agli inconvenienti dei sensori MOS, abbiamo rivisitato e migliorato la tecnologia elettrochimica con il nostro nuovo sensoreH2Sad alta temperatura (HT) per XgardIQ. I nuovi sviluppi del nostro sensore consentono un funzionamento fino a 70°C a 0-95%rh - una differenza significativa rispetto ad altri produttori che dichiarano un rilevamento fino a 60°C, soprattutto negli ambienti difficili del Medio Oriente.

Il nostro nuovo sensore HTH2Sha dimostrato di essere una soluzione affidabile e resistente per il rilevamento diH2Sad alte temperature - una soluzione che non si addormenta sul lavoro!

Fare clic qui per ulteriori informazioni sul nostro nuovo sensoreH2Sad alta temperatura (HT) per XgardIQ.