Wat is het verschil tussen een pellistor en een IR-sensor?

Sensoren spelen een sleutelrol bij de bewaking van ontvlambare gassen en dampen. Milieu, responstijd en temperatuurbereik zijn slechts enkele van de zaken waarmee rekening moet worden gehouden wanneer moet worden beslist welke technologie het beste is.

In deze blog belichten we de verschillen tussen pellistor (katalytische) sensoren en infrarood (IR) sensoren, waarom er voor- en nadelen zijn aan beide technologieën, en hoe u weet welke het best geschikt is voor verschillende omgevingen.

Pellistor sensor

Een pellistor gassensor is een apparaat dat wordt gebruikt om brandbare gassen of dampen die binnen het explosieve bereik vallen te detecteren om te waarschuwen voor een stijgend gasniveau. De sensor is een spoel van platina draad waarin een katalysator is aangebracht die een kleine actieve kraal vormt die de temperatuur verlaagt waarbij gas rondom de kraal ontbrandt. Wanneer een brandbaar gas aanwezig is, stijgt de temperatuur en de weerstand van de kraal ten opzichte van de weerstand van de inerte referentiekraal. Het verschil in weerstand kan worden gemeten, waardoor het aanwezige gas kan worden gemeten. Vanwege de katalysator en de korrels wordt een pellistor-sensor ook wel een katalytische of katalytische kralensensor genoemd.

De pellistorsensoren werden oorspronkelijk in de jaren 1960 ontworpen door de Britse wetenschapper en uitvinder Alan Baker, als oplossing voor de lang aanslepende technieken van de vlamveiligheidslamp en de kanarie. Meer recentelijk worden de apparaten gebruikt in industriële en ondergrondse toepassingen zoals mijnen of tunnelbouw, olieraffinaderijen en booreilanden.

Pellistorsensoren zijn relatief goedkoper door verschillen in technologieniveau in vergelijking met IR-sensoren, maar zij moeten wellicht vaker worden vervangen.

Met een lineaire output die overeenkomt met de gasconcentratie, kunnen correctiefactoren worden gebruikt om de respons van pellistors op andere ontvlambare gassen bij benadering te berekenen, waardoor pellistors een goede keuze kunnen zijn wanneer er meerdere ontvlambare dampen aanwezig zijn.

Niet alleen dit, maar pellistors in vaste detectoren met mV-bruguitgangen zoals de Xgard type 3 zijn zeer geschikt voor moeilijk bereikbare plaatsen, aangezien kalibratie-aanpassingen kunnen plaatsvinden op het lokale bedieningspaneel.

Anderzijds hebben pellistors het moeilijk in omgevingen met weinig of geen zuurstof, aangezien voor het verbrandingsproces waarbij ze werken, zuurstof nodig is. Daarom bevatten instrumenten voor besloten ruimten met katalytische LEL-sensoren van het pellistortype vaak een sensor voor het meten van zuurstof.

In omgevingen waar verbindingen silicium, lood, zwavel en fosfaten bevatten, is de sensor gevoelig voor vergiftiging (onomkeerbaar verlies van gevoeligheid) of remming (omkeerbaar verlies van gevoeligheid), wat een gevaar kan betekenen voor mensen op de werkplek.

Bij blootstelling aan hoge gasconcentraties kunnen pellistorsensoren beschadigd raken. In dergelijke situaties zijn pellistors niet "fail safe", wat betekent dat er geen melding wordt gegeven wanneer een storing in het instrument wordt gedetecteerd. Een storing kan alleen worden vastgesteld door vóór elk gebruik een bumptest uit te voeren om er zeker van te zijn dat de prestaties niet worden aangetast.

 

IR-sensor

Infraroodsensortechnologie is gebaseerd op het principe dat infrarood (IR) licht met een bepaalde golflengte door het doelgas wordt geabsorbeerd. Gewoonlijk zijn er twee zenders in een sensor die IR-lichtstralen genereren: een meetbundel met een golflengte die door het doelgas wordt geabsorbeerd, en een referentiebundel die niet wordt geabsorbeerd. Elke bundel heeft een gelijke intensiteit en wordt door een spiegel in de sensor afgebogen op een foto-ontvanger. Het resulterende verschil in intensiteit tussen de referentie- en de meetbundel in aanwezigheid van het doelgas wordt gebruikt om de concentratie van het aanwezige gas te meten.

In veel gevallen kan infrarood-sensortechnologie (IR) een aantal voordelen bieden ten opzichte van pellistors of betrouwbaarder zijn in gebieden waar de prestaties van op pellistors gebaseerde sensoren kunnen worden aangetast, zoals zuurstofarme en inerte omgevingen. Alleen de infraroodstraal heeft een wisselwerking met de omringende gasmoleculen, waardoor de sensor het voordeel heeft dat hij niet wordt blootgesteld aan het gevaar van vergiftiging of remming.

IR-technologie biedt fail-safe testen. Dit betekent dat als de infraroodstraal defect zou raken, de gebruiker daarvan op de hoogte wordt gebracht.

Gas-Pro TK gebruikt een dubbele IR-sensor - de beste technologie voor de specialistische omgevingen waar standaard gasdetectors gewoon niet werken, of het nu gaat om het doorspoelen van tanks of het vrijmaken van gassen.

Een voorbeeld van een van onze op IR gebaseerde detectoren is de Crowcon Gas-Pro IR, ideaal voor de olie- en gasindustrie, die methaan, pentaan of propaan kan detecteren in potentieel explosieve, zuurstofarme omgevingen waar pellistor sensoren het moeilijk hebben. We gebruiken ook een dual range %LEL- en %Volume-sensor in onze Gas-Pro TK, die geschikt is om te meten en om te schakelen tussen beide metingen, zodat hij altijd veilig op de juiste parameter werkt.

IR-sensoren zijn echter niet allemaal perfect, aangezien zij slechts een lineaire output op het doelgas hebben; de respons van een IR-sensor op andere ontvlambare dampen dan het doelgas zal niet-lineair zijn.

Zoals pellistors gevoelig zijn voor vergiftiging, zijn IR-sensors gevoelig voor zware mechanische en thermische schokken en worden zij ook sterk beïnvloed door grove drukveranderingen. Bovendien kunnen infraroodsensoren niet worden gebruikt voor de detectie van waterstofgas, en daarom wordt voorgesteld in dit geval pellistors of elektromechanische sensoren te gebruiken.

Het belangrijkste doel voor de veiligheid is de beste detectietechnologie te kiezen om de gevaren op de werkplek tot een minimum te beperken. Wij hopen dat wij, door duidelijk de verschillen tussen deze twee sensoren aan te geven, het bewustzijn kunnen vergroten over hoe diverse industriële en gevaarlijke omgevingen veilig kunnen blijven.

Voor meer informatie over pellistor- en IR-sensoren kunt u onze whitepaper downloaden, die illustraties en diagrammen bevat om u te helpen de beste technologie voor uw toepassing te bepalen.

Crowcon sensoren zullen niet slapen tijdens het werk.

MOS-sensoren (metaaloxidehalfgeleiders) worden gezien als een van de meest recente oplossingen voor de detectie van waterstofsulfide (H2S) bij schommelende temperaturen van maximaal 50°C tot halverwege de 20°C, en in vochtige klimaten zoals het Midden-Oosten.

Gebruikers en gasdetectieprofessionals hebben zich echter gerealiseerd dat MOS-sensoren niet de meest betrouwbare detectietechnologie zijn. Deze blog behandelt waarom deze technologie moeilijk te onderhouden kan blijken en met welke problemen gebruikers te maken kunnen krijgen.

Een van de grootste nadelen van de technologie is het risico dat de sensor "in slaap valt" wanneer hij gedurende een bepaalde tijd geen gas detecteert. Dit is natuurlijk een enorm veiligheidsrisico voor werknemers in de omgeving... niemand wil geconfronteerd worden met een gasdetector die uiteindelijk geen gas detecteert.

MOS-sensoren hebben een verwarmingselement nodig om te egaliseren, zodat zij een consistente meetwaarde kunnen produceren. Bij de eerste inschakeling heeft het verwarmingselement echter tijd nodig om op te warmen, waardoor er een aanzienlijke vertraging optreedt tussen het inschakelen van de sensor en de reactie van de sensor op gevaarlijk gas. MOS-fabrikanten raden gebruikers daarom aan de sensor 24-48 uur te laten equilibreren alvorens te kalibreren. Sommige gebruikers kunnen dit als een belemmering voor de productie beschouwen, en ook als een langere tijd voor service en onderhoud.

De vertraging van de verwarming is niet het enige probleem. Hij verbruikt veel stroom, wat een bijkomend probleem oplevert: dramatische temperatuurschommelingen in de gelijkstroomkabel, waardoor de spanning van de detector verandert en het gasniveau onnauwkeurig wordt afgelezen. 

Zoals de naam metaaloxide-halfgeleider al aangeeft, zijn de sensoren gebaseerd op halfgeleiders waarvan bekend is dat zij afwijken bij veranderingen in de vochtigheidsgraad - iets wat niet ideaal is voor het vochtige klimaat in het Midden-Oosten. In andere industrieën worden halfgeleiders vaak omhuld met epoxyhars om dit te voorkomen, maar in een gassensor zou deze coating het gasdetectiemechanisme verstoren omdat het gas de halfgeleider niet kan bereiken. Het toestel staat ook bloot aan het zure milieu dat ontstaat door het plaatselijke zand in het Midden-Oosten, wat een invloed heeft op de geleidbaarheid en de nauwkeurigheid van de gasuitlezing.

Een andere belangrijke veiligheidsimplicatie van een MOS-sensor is dat met de output bij bijna-nulH2S-niveausvalse alarmen kunnen ontstaan. Vaak wordt de sensor gebruikt met een niveau van "nulonderdrukking" op het bedieningspaneel. Dit betekent dat het bedieningspaneel nog enige tijd nadat deH2S-niveausbeginnen te stijgen een nul-uitlezing kan geven. Deze late registratie van de aanwezigheid van gas op een laag niveau kan dan de waarschuwing voor een ernstig gaslek, de mogelijkheid tot evacuatie en het extreme gevaar voor levens vertragen.

MOS-sensoren blinken uit in een snelle reactie opH2S, zodat de noodzaak van een sinter dit voordeel tenietdoet. OmdatH2Seen "kleverig" gas is, kan het worden geadsorbeerd aan oppervlakken, met inbegrip van die van sinters, waardoor de snelheid waarmee het gas het detectieoppervlak bereikt, wordt vertraagd.

Om de nadelen van MOS-sensoren aan te pakken, hebben we de elektrochemische technologie opnieuw bekeken en verbeterd met onze nieuweH2S-sensorvoor hoge temperatuur (HT) voor XgardIQ. De nieuwe ontwikkelingen van onze sensor maken een werking tot 70°C bij 0-95%rh mogelijk - een aanzienlijk verschil met andere fabrikanten die detectie tot 60°C claimen, vooral onder de zware omstandigheden in het Midden-Oosten.

Onze nieuwe HTH2S-sensorheeft bewezen een betrouwbare en veerkrachtige oplossing te zijn voor de detectie vanH2Sbij hoge temperaturen - een oplossing die niet in slaap valt tijdens het werk!

Klik hier voor meer informatie over onze nieuweH2S-sensorvoor hoge temperaturen (HT) voor XgardIQ.