Identifier les fuites de gazoducs à une distance sûre

L'utilisation du gaz naturel, dont le méthane est le principal composant, augmente dans le monde entier. Il a également de nombreuses utilisations industrielles, comme la fabrication de produits chimiques tels que l'ammoniac, le méthanol, le butane, l'éthane, le propane et l'acide acétique ; il entre également dans la composition de produits aussi divers que les engrais, les antigels, les plastiques, les produits pharmaceutiques et les tissus.

Le gaz naturel est transporté de plusieurs façons : par gazoducs sous forme gazeuse, sous forme de gaz naturel liquéfié (GNL) ou de gaz naturel comprimé (GNC). Le GNL est la méthode habituelle pour transporter le gaz sur de très longues distances, par exemple à travers les océans, tandis que le GNC est généralement transporté par des camions-citernes sur de courtes distances. Les gazoducs sont le mode de transport privilégié pour les longues distances sur terre (et parfois en mer), comme entre la Russie et l'Europe centrale. Les sociétés de distribution locales livrent également le gaz naturel aux utilisateurs commerciaux et domestiques par le biais de réseaux de services publics au sein des pays, des régions et des municipalités.

L'entretien régulier des systèmes de distribution de gaz est essentiel. L'identification et la rectification des fuites de gaz font également partie intégrante de tout programme d'entretien, mais cette tâche est notoirement difficile dans de nombreux environnements urbains et industriels, car les conduites de gaz peuvent être situées sous terre, en hauteur, dans les plafonds, derrière les murs et les cloisons ou dans des endroits autrement inaccessibles tels que des bâtiments fermés à clé. Jusqu'à récemment, les fuites suspectées de ces gazoducs pouvaient entraîner le bouclage de zones entières jusqu'à ce que la fuite soit localisée.

C'est précisément parce que les détecteurs de gaz conventionnels - tels que ceux qui utilisent la combustion catalytique, l'ionisation de flamme ou la technologie des semi-conducteurs - ne sont pas capables de détecter les gaz à distance et sont donc incapables de détecter les fuites de gaz dans les pipelines difficiles d'accès, que de nombreuses recherches ont été menées récemment sur les moyens de détecter le méthane à distance.

Télédétection

Des technologies de pointe sont désormais disponibles pour permettre la détection et l'identification à distance des fuites avec une précision extrême. Les appareils portatifs, par exemple, peuvent désormais détecter le méthane à des distances allant jusqu'à 100 mètres, tandis que les systèmes montés sur des avions peuvent identifier des fuites à un demi-kilomètre de distance. Ces nouvelles technologies transforment la manière de détecter et de traiter les fuites de gaz naturel.

La télédétection est réalisée par spectroscopie d'absorption laser infrarouge. Comme le méthane absorbe une longueur d'onde spécifique de la lumière infrarouge, ces instruments émettent des lasers infrarouges. Le faisceau laser est dirigé vers l'endroit où l'on soupçonne la présence d'une fuite, par exemple une conduite de gaz ou un plafond. Comme une partie de la lumière est absorbée par le méthane, la lumière reçue en retour fournit une mesure de l'absorption par le gaz. Une caractéristique utile de ces systèmes est le fait que le faisceau laser peut traverser des surfaces transparentes, comme le verre ou le plexiglas, de sorte qu'il peut être possible de tester un espace clos avant d'y entrer. Les détecteurs mesurent la densité moyenne du gaz méthane entre le détecteur et la cible. Les relevés sur les appareils portables sont donnés en ppm-m (produit de la concentration du nuage de méthane (ppm) et de la longueur du trajet (m)). De cette manière, les fuites de méthane peuvent être rapidement confirmées en pointant un faisceau laser vers la fuite suspectée ou le long d'une ligne de sondage, par exemple.

Une différence importante entre la nouvelle technologie et les détecteurs de méthane classiques est que les nouveaux systèmes mesurent la concentration moyenne de méthane, plutôt que de détecter le méthane en un seul point - ce qui donne une indication plus précise de la gravité de la fuite.

Les applications pour les appareils portatifs comprennent :

  • Enquêtes sur les pipelines
  • Usine à gaz
  • Enquêtes sur les propriétés industrielles et commerciales
  • Appel d'urgence
  • Surveillance des gaz de décharge
  • Etude de la surface des routes

Réseaux de distribution municipaux

On se rend compte aujourd'hui des avantages de la technologie à distance pour la surveillance des pipelines en milieu urbain.

La capacité des dispositifs de télédétection à surveiller les fuites de gaz à distance en fait des outils extrêmement utiles en cas d'urgence. Les opérateurs peuvent rester à l'écart des sources de fuite potentiellement dangereuses lorsqu'ils vérifient la présence de gaz dans des locaux fermés ou des espaces confinés, car la technologie leur permet de surveiller la situation sans y accéder. Non seulement ce processus est plus facile et plus rapide, mais il est également sûr. De plus, il n'est pas affecté par les autres gaz présents dans l'atmosphère puisque les détecteurs sont calibrés pour détecter uniquement le méthane - il n'y a donc aucun risque d'obtenir de faux signaux, ce qui est important dans les situations d'urgence.

Le principe de la télédétection s'applique également à l'inspection des colonnes montantes (les conduites aériennes qui transportent le gaz jusqu'aux locaux des clients et qui longent normalement les murs extérieurs des bâtiments). Dans ce cas, les opérateurs orientent l'appareil vers la conduite en suivant son parcours, et ce depuis le sol, sans avoir à utiliser d'échelle ni à accéder aux propriétés des clients.

Zones dangereuses

Outre la détection des fuites de gaz dans les réseaux de distribution municipaux, les appareils antidéflagrants et homologués ATEX peuvent être utilisés dans les zones dangereuses de la zone 1, telles que les usines pétrochimiques, les raffineries de pétrole, les terminaux et les navires de GNL, ainsi que dans certaines applications minières.

Lors de l'inspection d'un réservoir souterrain de GNL/GPL, par exemple, un dispositif antidéflagrant serait nécessaire à moins de 7,5 mètres du réservoir lui-même et à un mètre autour de la soupape de sécurité. Les opérateurs doivent donc être pleinement conscients de ces restrictions et être équipés du type d'équipement approprié.

Coordination GPS

Certains instruments permettent désormais d'effectuer des relevés ponctuels de méthane en divers points d'un site - tel qu'un terminal GNL - en générant automatiquement un suivi GPS des relevés et des emplacements des mesures. Cela rend les allers-retours pour des investigations supplémentaires beaucoup plus efficaces, tout en fournissant un enregistrement authentique de l'activité d'inspection confirmée - souvent une condition préalable à la conformité réglementaire.

Détection aérienne

Au-delà des appareils portatifs, il existe également des détecteurs de méthane à distance qui peuvent être installés sur des avions et qui détectent les fuites de gazoducs sur des centaines de kilomètres. Ces systèmes peuvent détecter des niveaux de méthane à des concentrations aussi faibles que 0,5 ppm jusqu'à 500 mètres de distance et comprennent un affichage sur carte mobile en temps réel des concentrations de gaz au fur et à mesure que l'enquête est menée.

Le fonctionnement de ces systèmes est relativement simple. Un détecteur à distance est fixé sous le fuselage de l'avion (généralement un hélicoptère). Comme dans le cas de l'appareil portable, l'unité produit un signal laser infrarouge, qui est dévié par toute fuite de méthane se trouvant sur sa trajectoire ; plus le niveau de méthane est élevé, plus le faisceau est dévié. Ces systèmes utilisent également le GPS, de sorte que le pilote peut suivre une carte mobile en temps réel de l'itinéraire GPS du pipeline, avec un affichage en temps réel de la trajectoire de l'appareil, des fuites de gaz et de la concentration (en ppm) présenté à l'équipage à tout moment. Une alarme sonore peut être réglée pour une concentration de gaz souhaitée, ce qui permet au pilote de s'approcher pour une étude plus approfondie.

Conclusion

La gamme de systèmes de détection à distance du méthane s'élargit rapidement, de nouvelles technologies étant développées en permanence. Tous ces dispositifs, qu'ils soient portatifs ou montés sur des avions, permettent une identification rapide, sûre et très ciblée des fuites - que ce soit sous la chaussée, dans une ville ou sur des centaines de kilomètres de toundra en Alaska. Cela permet non seulement d'éviter des émissions inutiles et coûteuses, mais aussi de s'assurer que le personnel travaillant sur ou à proximité des pipelines n'est pas exposé à des dangers inutiles.

L'utilisation du gaz naturel étant en augmentation dans le monde entier, nous prévoyons des avancées technologiques rapides en matière de détection de gaz à distance dans des applications aussi diverses que la recherche de fuites, l'intégrité des transmissions, la gestion des usines et des installations, l'agriculture et la gestion des déchets, ainsi que les applications d'ingénierie des procédés telles que la production de coke et d'acier. Chacun de ces domaines présente des situations où l'accès peut être difficile, associé à la nécessité de placer la protection du personnel en tête des priorités. Les possibilités offertes par les détecteurs de méthane à distance ne cessent donc de croître.

 

Les risques d'explosion dans les réservoirs inertes et comment les éviter

Le sulfure d'hydrogène (H2S) est connu pour être extrêmement toxique et hautement corrosif. Dans un environnement de réservoir inerte, il représente un danger supplémentaire et sérieux : la combustion qui, on le soupçonne, a été la cause de graves explosions dans le passé.

Le sulfure d'hydrogène peut être présent en %vol dans le pétrole ou le gaz "acide". Le carburant peut également être rendu "acide" par l'action des bactéries sulfato-réductrices présentes dans l'eau de mer, souvent présentes dans les cales des pétroliers. Il est donc important de continuer à surveiller le niveau deH2S, car il peut changer, notamment en mer. CeH2Speut augmenter la probabilité d'un incendie si la situation n'est pas correctement gérée.

Les réservoirs sont généralement revêtus de fer (parfois recouvert de zinc). Le fer rouille, créant de l'oxyde de fer (FeO). Dans l'espace de tête inerte d'un réservoir, l'oxyde de fer peut réagir avecH2Spour former du sulfure de fer (FeS). Le sulfure de fer est un pyrophore, ce qui signifie qu'il peut s'enflammer spontanément en présence d'oxygène.

Exclusion des éléments du feu

Une citerne pleine d'huile ou de gaz constitue un risque d'incendie évident dans les bonnes circonstances. Les trois éléments du feu sont le combustible, l'oxygène et une source d'allumage. Sans ces trois éléments, un feu ne peut pas démarrer. L'air contient environ 21 % d'oxygène. Par conséquent, un moyen courant de contrôler le risque d'incendie dans une citerne est d'éliminer autant d'air que possible en rinçant l'air de la citerne avec un gaz inerte, tel que l'azote ou le dioxyde de carbone. Lors du déchargement de la citerne, on veille à ce que le carburant soit remplacé par un gaz inerte plutôt que par de l'air. Cela permet d'éliminer l'oxygène et d'éviter les départs de feu.

Par définition, il n'y a pas assez d'oxygène dans un environnement inerte pour qu'un incendie puisse se déclarer. Mais à un moment donné, il faudra laisser entrer de l'air dans le réservoir - pour que le personnel de maintenance puisse y pénétrer en toute sécurité, par exemple. Les trois éléments du feu peuvent alors se rencontrer. Comment le contrôler ?

  • L'oxygène doit pouvoir entrer
  • Il peut y avoir du FeS présent, que l'oxygène va faire étinceler.
  • L'élément qui peut être contrôlé est le carburant.

Si tout le carburant a été retiré et que la combinaison d'air et de FeS provoque une étincelle, cela ne peut pas faire de mal.

Suivi des éléments

Il ressort de ce qui précède qu'il est important de surveiller tous les éléments susceptibles de provoquer un incendie dans ces réservoirs de carburant. L'oxygène et le carburant peuvent être contrôlés directement à l'aide d'un détecteur de gaz approprié, tel que Gas-Pro TK. Conçu pour ces environnements spécialisés, Gas-Pro TK peut automatiquement mesurer un réservoir plein de gaz (mesuré en %vol) et un réservoir presque vide de gaz (mesuré en %LEL). Gas-Pro TK peut vous indiquer quand les niveaux d'oxygène sont suffisamment bas pour que vous puissiez charger du carburant en toute sécurité ou suffisamment élevés pour que le personnel puisse pénétrer dans le réservoir en toute sécurité. Une autre utilisation importante de Gas-Pro TK est la surveillance duH2S, qui permet d'évaluer la présence probable du pryophore, le sulfure de fer.

L'entretien pour la sécurité... Une visite à la raffinerie de pétrole

En travaillant au bureau, il est facile de se concentrer sur les tâches individuelles et de se détacher de la façon dont nos produits font une différence dans la vie des gens. L'un de nos clients a eu la gentillesse d'organiser une visite sur place pour qu'Andrea (notre future responsable Halma en stage de marketing) puisse voir de ses propres yeux comment nos produits sont utilisés et qui sont les utilisateurs finaux. Il s'agissait de visiter une raffinerie de pétrole pour voir où nos détecteurs de gaz portables Crowcon sont utilisés.


"La principale chose qui m'a surpris est la taille du site. La raffinerie de pétrole était très espacée et il nous a fallu 10 minutes pour aller de l'entrée du site à l'endroit où se trouvaient les ingénieurs de Crowcon. Les ingénieurs et les employés des différentes parties de la raffinerie portaient des vestes Hi Vis, de grandes bottes de sécurité, des casques de sécurité et semblaient tous avoir des détecteurs de gaz personnels. Au cours d'une rapide visite du site, j'ai appris que les produits de la raffinerie de pétrole ne se limitaient pas au gaz ou à l'essence, mais aussi au goudron, à l'asphalte, aux lubrifiants, au liquide vaisselle, à la paraffine et à bien d'autres choses encore.

Les produits sont tous stockés dans de grands conteneurs avec des tuyaux sur tout le site. La plupart des produits sont hautement inflammables, ce qui explique l'importance accordée à la sécurité. Au loin, il y avait quelques conteneurs en forme de dôme qui sont des vaisseaux pressurisés. Si l'un d'eux devait exploser, il aurait un rayon d'action de 15 km. J'ai soudainement eu l'envie de partir et de parcourir environ 15 km.

La base des ingénieurs de Crowcon était remplie de T4 orange, de Gas-Pros ainsi que d'une armée de "Daleks", je veux dire de Détectives, en attente d'étalonnage et de service. Bien que la dureté de cet environnement industriel soit évidente dans leur apparence, ils étaient autrement en bon état de marche, et l'ingénieur de service a travaillé rapidement sur les appareils.

Les utilisateurs finaux les considèrent comme un simple appareil qu'ils doivent porter pour faire leur travail, et ils aiment la simplicité et la fiabilité des appareils Crowcon. Les Detectives sont jetés partout et les Gas-Pros sont presque noirs par rapport à l'orange habituel, ce qui montre à quel point la robustesse de nos appareils est importante. Les dangers de cet environnement de travail ne sont généralement pas une grande préoccupation pour les utilisateurs, c'est leur vie quotidienne. Nos appareils leur permettent de rentrer chez eux après une dure journée de travail. C'est aux ingénieurs de service qu'il incombe de veiller à ce que les appareils fonctionnent correctement et ils doivent penser aux utilisateurs pour s'assurer que les appareils sont utilisés correctement.

Le fait de voir les appareils Crowcon utilisés et le nombre de fois où quelqu'un a demandé si les appareils étaient calibrés et prêts à être remis en service, a mis en évidence l'importance de l'utilisation des portables dans le cadre du régime de sécurité. "Qualité" et "robustesse", voilà comment les utilisateurs décrivent les produits Crowcon et même s'ils les traitent désormais comme les appareils qui sauvent des vies qu'ils sont, ces appareils sont régulièrement utilisés et appréciés. Ils font d'un environnement très inflammable et dangereux un endroit plus sûr."

Faits sur la détection fixe

Le placement optimal des détecteurs de gaz fixes nécessite une évaluation approfondie des risques. Cette courte vidéo met en évidence certaines des questions que vous devez vous poser avant d'acheter ou d'installer un système fixe dans votre usine ou sur votre site.

Continuer la lecture "Faits sur la détection fixe"

Le guide simple de Chris sur la technologie de communication pour la détection des gaz

L'émergence des technologies numériques et de communication permet de communiquer beaucoup plus d'informations à un système de contrôle, avec l'avantage supplémentaire de réduire les coûts de câblage. J'ai donc pensé qu'il serait utile de donner un aperçu des différentes technologies disponibles.

Continuer la lecture "Le guide simple de Chris sur la technologie de communication pour la détection des gaz".