Hvad er forskellen på en pellistor og en IR-sensor?

Sensorer spiller en central rolle, når det kommer til overvågning af brændbare gasser og dampe. Miljø, responstid og temperaturområde er blot nogle af de ting, du skal overveje, når du beslutter, hvilken teknologi der er bedst.

I denne blog fremhæver vi forskellene mellem pellistor (katalytiske) sensorer og infrarøde (IR) sensorer, hvorfor der er fordele og ulemper ved begge teknologier, og hvordan man ved, hvad der passer bedst til forskellige miljøer.

Pellistor sensor

En pellistorgassensor er en anordning, der bruges til at detektere brændbare gasser eller dampe, der falder inden for det eksplosive område for at advare om stigende gasniveauer. Sensoren er en spole af platintråd med en katalysator indsat inde for at danne en lille aktiv perle, der sænker temperaturen, hvor gas antændes omkring den. Når der er en brændbar gas til stede, øges perleperlens temperatur og modstand i forhold til modstanden af den inerte referenceperle. Forskellen i modstand kan måles, så måling af gas til stede. På grund af katalysatorer og perler, en pellistor sensor er også kendt som en katalytisk eller katalytisk perle sensor.

Pellistor sensorer blev oprindeligt skabt i 1960'erne af den britiske videnskabsmand og opfinder Alan Baker og blev oprindeligt designet som en løsning på den langvarige flammesikkerhedslampe og kanariefugleteknikker. For nylig anvendes enhederne til industrielle og underjordiske applikationer som miner eller tunneller, olieraffinaderier og boreplatforme.

Pellistor sensorer er relativt lavere i omkostningerne på grund af forskelle i niveauet af teknologi i forhold til IR sensorer, men de kan være forpligtet til at blive udskiftet oftere.

Med en lineær effekt svarende til gaskoncentrationen kan korrektionsfaktorer bruges til at beregne pellistorernes omtrentlige respons på andre brændbare gasser, hvilket kan gøre pellistorer til et godt valg, når der er flere brændbare dampe til stede.

Ikke kun dette, men pellistorer i faste detektorer med mV-broudgange som Xgard type 3 er meget velegnede til områder, der er svære at nå, da kalibreringsjusteringer kan finde sted ved det lokale kontrolpanel.

På den anden side kæmper pellistorer i miljøer, hvor der er lav eller lidt ilt, da den forbrændingsproces, som de arbejder med, kræver ilt. Af denne grund, begrænset rum instrumenter, der indeholder katalytisk pellistor type LEL sensorer ofte omfatter en sensor til måling af ilt.

I miljøer, hvor forbindelser indeholder silicium, bly, svovl og fosfater, er sensoren modtagelig for forgiftning (uopretteligt tab af følsomhed) eller hæmning (reversibelt tab af følsomhed), hvilket kan være en fare for mennesker på arbejdspladsen.

Hvis pellistorsensorer udsættes for høje gaskoncentrationer, kan de blive beskadiget. I sådanne situationer er pellistorer ikke 'fejlsikre', hvilket betyder, at der ikke gives nogen meddelelse, når der opdages en instrumentfejl. Enhver fejl kan kun identificeres gennem bumptest før hver brug for at sikre, at ydeevnen ikke forringes.

 

Sensor til IR

Infrarød sensorteknologi er baseret på princippet om, at infrarødt (IR) lys fra en bestemt bølgelængde absorberes af målgassen. Typisk er der to udledere i en sensor, der genererer stråler af IR-lys: en målestråle med en bølgelængde, der absorberes af målgassen, og en referencestråle, som ikke absorberes. Hver stråle er af samme intensitet og afbøjes af et spejl inde i sensoren på en fotomodtager. Den deraf følgende forskel i intensitet mellem reference- og målestrålen i nærværelse af målgassen anvendes til at måle koncentrationen af den gas, der er til stede.

I mange tilfælde kan infrarød (IR) sensorteknologi have en række fordele i forhold til pellistorer eller være mere pålidelig på områder, hvor pellistorbaseret sensorydelse kan forringes - herunder lavt iltindhold og inerte miljøer. Bare strålen af infrarød interagerer med de omkringliggende gasmolekyler, hvilket giver sensoren fordelen ved ikke at stå over for truslen om forgiftning eller hæmning.

IR-teknologi giver fejlsikker test. Det betyder, at hvis den infrarøde stråle skulle svigte, ville brugeren blive underrettet om denne fejl.

Gas-Pro TK bruger en dobbelt IR-sensor - den bedste teknologi til de specialiserede miljøer, hvor standardgasdetektorer bare ikke fungerer, uanset om det er tankrensning eller gasfrigørelse.

Et eksempel på en af vores IR-baserede detektorer er Crowcon Gas-Pro IR, der er ideel til olie- og gasindustrien, da den kan detektere metan, pentan eller propan i potentielt eksplosive miljøer med lavt iltindhold, hvor pellistor-sensorer kan have det svært. Vi bruger også en %LEL- og %Volume-sensor med to områder i vores Gas-Pro TK, som er egnet til at måle og skifte mellem begge målinger, så den altid arbejder sikkert med den korrekte parameter.

Men IR sensorer er ikke alle perfekte, da de kun har en lineær udgang til at målrette gas; en IR-sensors reaktion på andre brandfarlige dampe, vil målgassen være ikke-lineær.

Ligesom pellistorer er modtagelige for forgiftning, IR sensorer er modtagelige for alvorlige mekaniske og termiske stød og også stærkt påvirket af bruttotryk ændringer. Derudover kan infrarøde sensorer ikke bruges til at detektere brintgas, derfor foreslår vi at bruge pellistorer eller elektromekaniske sensorer i denne situation.

Det primære mål for sikkerheden er at vælge den bedste detektionsteknologi for at minimere farer på arbejdspladsen. Vi håber, at vi ved klart at identificere forskellene mellem disse to sensorer kan øge bevidstheden om, hvordan forskellige industrielle og farlige miljøer kan forblive sikre.

For yderligere vejledning om pellistor- og IR-sensorer kan du downloade vores whitepaper, som indeholder illustrationer og diagrammer, der hjælper med at bestemme den bedste teknologi til din applikation.

Du vil ikke finde Crowcon sensorer sover på jobbet

MOS (metaloxid halvleder) sensorer er blevet set som en af de nyeste løsninger til håndtering af påvisning af hydrogensulfid (H2S) i svingende temperaturer fra op til 50 ° C ned til midten af tyverne, samt fugtige klimaer som Mellemøsten.

Brugere og fagfolk inden for gasdetektion har imidlertid indset, at MOS-sensorer ikke er den mest pålidelige detektionsteknologi. Denne blog dækker, hvorfor denne teknologi kan vise sig vanskeligt at vedligeholde, og hvilke problemer brugerne kan stå over for.

En af de største ulemper ved teknologien er ansvaret for sensoren "kommer til at sove", når det ikke støder på gas i en periode. Selvfølgelig er dette en enorm sikkerhedsrisiko for arbejdstagere i området. . . ingen ønsker at stå over for en gasdetektor, der i sidste ende ikke opdager gas.

MOS-sensorer kræver en varmelegeme for at udligne, så de kan producere en ensartet aflæsning. Men når ovnen først er tændt, tager det tid at varme op, hvilket medfører en betydelig forsinkelse mellem at tænde sensorerne og reagere på farlig gas. MOS-producenter anbefaler derfor brugerne at lade sensoren ekvilibrere i 24-48 timer før kalibrering. Nogle brugere kan finde dette en hindring for produktionen, samt forlænget tid til service og vedligeholdelse.

Varmeapparatet forsinkelse er ikke det eneste problem. Det bruger en masse strøm, som udgør et yderligere spørgsmål om dramatiske temperaturændringer i DC-strømkablet, forårsager ændringer i spændingen som detektoren hoved og unøjagtigheder i gas niveau læsning. 

Som dens metaloxid halvleder navn antyder, sensorerne er baseret på halvledere, som er anerkendt for at drive med ændringer i luftfugtigheden- noget, der ikke er ideelt for det fugtige mellemøstlige klima. I andre brancher, halvledere er ofte indkapslet i epoxy harpiks for at undgå dette, men i en gassensor denne belægning ville gasdetektering mekanisme som gassen ikke kunne nå halvlederen. Enheden er også åben for det sure miljø skabt af det lokale sand i Mellemøsten, der påvirker ledningsevne og nøjagtighed af gasaflæsning.

En anden væsentlig sikkerhedspåståelse af en MOS-sensor er, at med output på næsten nul niveauer af H2S kan være falske alarmer. Ofte bruges sensoren med et niveau af "nul undertrykkelse" ved kontrolpanelet. Det betyder, at kontrolpanelet kan vise en nul-udlæsning i nogen tid efter niveauer af H2S er begyndt at stige. Denne sene registrering af gastilstedeværelse på lavt niveau kan derefter forsinke advarslen om en alvorlig gaslækage, mulighed for evakuering og den ekstreme risiko for liv.

MOS sensorer udmærker sig ved at reagere hurtigt på H2S, derfor er behovet for en sinter modvirker denne fordel. På grund af H2S er en "klæbrig" gas, det er i stand til at blive adsorberet på overflader, herunder af sinters, hvilket resulterer bremse den hastighed, hvormed gas når detektionsoverfladen.

For at tackle ulemperne ved MOS-sensorer har vi revideret og forbedret den elektrokemiske teknologi med vores nye højtemperatur (HT)H2S-sensortil XgardIQ. Den nye udvikling af vores sensor muliggør drift på op til 70°C ved 0-95%rh - en betydelig forskel i forhold til andre producenter, der hævder detektion på op til 60°C, især i de barske miljøer i Mellemøsten.

Vores nye HT H2S sensor har vist sig at være en pålidelig og robust løsning til påvisning af H2S ved høje temperaturer - en løsning, der ikke falder i søvn på jobbet!

Klik her for mere information om vores nye højtemperatur (HT)H2S-sensortil XgardIQ.