Once again, Gas-Pro is ‘detector of choice’ for volcano environmental expedition

We are all familiar with the term global warming and often see statistics about the potential effects this could have on our planet.  One such prediction is by the end of this century the globe will increase in temperature by between 0.8 and 4 degrees.

What many of us may not know is that volcanoes, which are a completely natural phenomenon, contribute a significant amount of gases into our atmosphere. And these gases are currently not considered in the world’s climate models, which means there is potentially a large margin of error.

However, this could be about to change as Yves Moussallam, an inspiring French Volcanologist, who with the support of Rolex and the 2019 Rolex Awards for Enterprise, has made it his mission to understand volcanos and how they impact on our planet.  He ventures into these dramatic and dangerous environments to take measurements which are used by scientists and climatologists to improve their prediction models.

By observing volcanos, and gathering this vitally important data, he is helping the world understand the impact volcanos are having on climate change.

Yves is no stranger to volcanic expeditions. In 2015, he led a small team to the Nazca subduction zone in South America. Their mission was to provide the first accurate and large-scale estimate of the flux of several volatile gas species.

To keep the team safe, Yves selected Crowcon detection equipment and was delighted with Gas man and Gas-Pro’s lightweight, clean and safe functionality.

Now Yves is back with a new expedition and has turned to Crowcon once again. This time, Yves is heading to the region of Melanesia in Italy.  Satellites, which are used to track volcanic behaviour, have shown that this region is responsible for approximately a third of global volcanic gas emissions.

His expedition will climb these volcanoes and take measurements directly in the volcanic plume.

There are two main methods to measure gases in volcanoes.  The first is via satellite which takes images from space.  The second is to go directly into the field and measure gas released at its source.

Experts believe the method of working directly in the field is the most accurate as it is positioned far closer to the source so there is a reduced risk of error.

To conduct these measurements requires tried, tested and trusted equipment and with Crowcon’s proven track record, Yves turned again to Gas-Pro.

Crowcon’s Gas-Pro includes an onboard datalogging feature which will provide an extra line of data and an idea of average exposure, which is important for expeditions that span longer periods.  It is also lightweight which is hugely beneficial when carrying bulky equipment.

Everyone at Crowcon wishes Yves a safe and successful expedition and we hope the data he gathers will help us understand the impact volcanos have on our world.

#Rolex #RolexAwards #PerpetualPlanet #Perpetual

Helping you stay safe during the BBQ season

Who doesn’t love a summer BBQ? Come rain or shine we light up our BBQs with usually the only worries being whether it will rain, or the sausages are fully cooked through.

While these are important, (especially making sure the sausages are cooked!) many of us are completely unaware of the potential risks.

Carbon monoxide is a gas that has received its fair share of publicity with many of us installing detectors in our homes and businesses, but completely unaware carbon monoxide is associated with our BBQs.

If the weather is poor, we may decide to barbeque in the garage doorway or under a tent or canopy. Some of us may even bring our BBQs into the tent after use.  These can all be potentially fatal as the carbon monoxide collects in these confined areas.

Equally with a propane or butane gas canister, we store in our garages, sheds and even our homes unaware that there is a risk of a potentially deadly combination of an enclosed space, a gas leak and a spark from an electrical device.  All of which could cause an explosion.

All of that said, BBQs are here to stay and if we use them safely, are a great way to spend a summer afternoon.  So, here is a selection of facts and tips from our safety team at Crowcon which we hope will help you enjoy a safe and delicious summer ahead!

 

Quick facts and tips about BBQ charcoals:

  • Carbon monoxide is a colourless and odourless gas so just because we can’t smell or see it, doesn’t mean it’s not there
  • Carbon monoxide is a by-product of burning fossil fuels, which include charcoal and BBQ gas
  • Always use your BBQ in a well-ventilated open area as it can accumulate to toxic levels in enclosed spaces
  • Never bring a charcoal into a tent, even if it seems cold. Remember a smouldering BBQ will still give off carbon monoxide
  • Be aware and act quickly if someone experiences the symptoms of carbon monoxide poisoning which include headaches, dizziness, breathlessness, nausea, confusion, collapse and unconsciousness. These symptoms can be potentially fatal

 

Quick facts and tips about gas cannisters:

  • Gas barbecues tend to use propane, butane or LPG (which is a mixture of the two)
  • Gas BBQs have holes in the bottom to prevent a build-up of gas. This is because gas is heavier than air so will accumulate in low areas or fill a space from the bottom up
  • To avoid the accumulation of gas, cannisters should always be stored outside, upright, in a well-ventilated area, away from heat sources, and away from enclosed low spaces
  • If you store your BBQ in the garage, make sure you disconnect the gas cannister and keep this outside
  • When you are using your BBQ, keep the cannister to one side so it isn’t underneath and close to the heat source and position the BBQ in an open space
  • Always keep the cannister away from ignition sources when changing cannisters
  • Always make sure you turn off the gas at the BBQ as well as on the regulator on the cannister, after use

 

Chernobyl – a powerful safety message to the world

The recent Sky Atlantic TV series Chernobyl sent out a powerful message about the catastrophic and far reaching consequences of radiation gases, both to people and the environment.

The series is based on true events from the 1986 nuclear disaster in the then USSR; the largest uncontrolled radioactive release into the environment ever recorded. The accident resulted in an untold number of fatalities, as well as serious social and economic disruption for large populations within the USSR and beyond.

The Chernobyl explosion resulted in a radioactive gas cloud which travelled across Europe, including the UK; falling to the ground in the form of ‘nuclear rain’.

There are many disturbing facts we read about. Not least that according to the British Ministry of Health, 369 farms and 190,000 sheep in Britain still contain traces of radioactive fallout from the Chernobyl disaster.

Both human and mechanical error contributed to the disaster and thankfully safety standards, regulations, awareness and new technologies have significantly improved since the disaster.

The principal of safety, whether a huge nuclear facility or small manufacturing plant, must remain the same. Here at Crowcon we are dedicated to keeping people and the environment protected. Our technologies support organisations across multiple industries, including nuclear plants, improving plant and personal safety. Our technologies help our customers be protected from the dangers of gases.

At Crowcon, we welcome shows such as Chernobyl which document historical disasters such as this and highlight in a dramatic but real way, the importance of ensuring companies understand the need for safety measures, however big or small, are in place.  Protecting their people, the environment and the world.

#DetectingGasSavingLives

#SaferCleanerHealthier

Identifying Leaks from Natural Gas pipelines at a Safe Distance

The use of natural gas, of which methane is the principle component, is increasing worldwide. It also has many industrial uses, such as the manufacture of chemicals like ammonia, methanol, butane, ethane, propane and acetic acid; it is also an ingredient in products as diverse as fertilizer, antifreeze, plastics, pharmaceuticals and fabrics.

Natural gas is transported in several ways: through pipelines in gaseous form; as liquefied natural gas (LNG) or compressed natural gas (CNG). LNG is the normal method for transporting the gas over very long distances, such as across oceans, while CNG is usually carried by tanker trucks over short distances. Pipelines are the preferred transport choice for long distances over land (and sometimes offshore), such as between Russia and central Europe. Local distribution companies also deliver natural gas to commercial and domestic users across utility networks within countries, regions and municipalities.

Regular maintenance of gas distribution systems is essential. Identifying and rectifying gas leaks is also an integral part of any maintenance programme, but it is notoriously difficult in many urban and industrial environments, as the gas pipes may be located underground, overhead, in ceilings, behind walls and bulkheads or in otherwise inaccessible locations such as locked buildings. Until recently, suspected leaks from these pipelines could lead to whole areas being cordoned off until the location of the leak was found.

Precisely because conventional gas detectors – such as those utilising catalytic combustion, flame ionisation or semiconductor technology – are not capable of remote gas detection and are therefore unable to detect gas leaks in hard to access pipelines, there has been a lot of recent research into ways of detecting methane gas remotely.

Remote Detection

Cutting edge technologies are now becoming available which allow the remote detection and identification of leaks with pinpoint accuracy. Hand-held units, for example, can now detect methane at distances of up to 100 metres, while aircraft-mounted systems can identify leaks half a kilometre away. These new technologies are transforming the way natural gas leaks are detected and dealt with.

Remote sensing is achieved using infrared laser absorption spectroscopy. Because methane absorbs a specific wavelength of infrared light, these instruments emit infrared lasers. The laser beam is directed to wherever the leak is suspected, such as a gas pipe or a ceiling. Because some of the light is absorbed by the methane, the light received back provides a measurement of absorption by the gas. A useful feature of these systems is the fact that the laser beam can penetrate transparent surfaces, such as glass or perspex, so it may be possible to test an enclosed space prior to entering it. The detectors measure the average methane gas density between the detector and target. Readings on the handheld units are given in ppm-m (a product of the concentration of methane cloud (ppm) and path length (m)). In this way, methane leaks can be quickly confirmed by pointing a laser beam towards the suspected leak or along a survey line, for example.

An important difference between the new technology and conventional methane detectors is that the new systems measure average methane concentration, rather than detecting methane at a single point – this gives a more accurate indication of the severity of the leak.

Applications for hand-held devices include:

  • Pipeline surveys
  • Gas plant
  • Industrial and commercial property surveys
  • Emergency call out
  • Landfill gas monitoring
  • Road surface survey

Municipal Distribution Networks

The benefits of remote technology for monitoring pipelines in urban settings are now being realised.

The ability of remote detection devices to monitor gas leaks from a distance makes them extremely useful tools in emergencies. Operators can stay away from potentially dangerous leak sources when checking the presence of gas in closed premises or confined spaces as the technology allows them to monitor the situation without actually gaining access. Not only is this process easier and quicker, but it is also safe. Moreover, it is not affected by other gases present in the atmosphere since the detectors are calibrated to only detect methane – therefore there is no danger of getting false signals, which is important in emergency situations.

The principle of remote detection is also applied when inspecting risers (the above-ground pipes carrying gas to the customers’ premises and normally running along the building outside walls). In this case, the operators point the device towards the pipe, following its route; they can do this from ground level, without having to use ladders or access the customers’ properties.

Hazardous Areas

In addition to detecting gas leaks from municipal distribution networks, explosion-proof, ATEX approved devices can be used in Zone 1 hazardous areas such as petrochemical plants, oil refineries, LNG terminals and vessels, as well as certain mining applications.

When inspecting an LNG/LPG underground tank, for example, an explosion-proof device would be required within 7.5 metres of the tank itself and one metre around the safety valve. Operators therefore need to be fully aware of these restrictions and equipped with the appropriate equipment type.

GPS Coordination

Some instruments now allow spot methane readings to be taken at various points around a site – such as an LNG terminal – automatically generating GPS tracking of the measurement readings and locations. This makes return trips for additional investigations far more efficient, while also providing a bona-fide record of confirmed inspection activity – often a prerequisite for regulatory compliance.

Aerial Detection

Moving beyond hand-held devices, there are also remote methane detectors which can be fitted to aircraft and which detect leaks from gas pipelines over hundreds of kilometres. These systems can detect methane levels at concentrations as small as 0.5ppm up to 500 metres away and include a real-time moving map display of gas concentrations as the survey is conducted.

The way these systems work is relatively simple. A remote detector is attached beneath the aircraft’s fuselage (usually a helicopter). As with the handheld device, the unit produces an infrared laser signal, which is deflected by any methane leakage within its path; higher methane levels result in more beam deflection. These systems also utilise GPS, so the pilot can follow a real-time moving map GPS route display of the pipeline, with a real-time display of aircraft path, gas leaks and concentration (in ppm) presented to the crew at all times. An audible alarm can be set for a desired gas concentration, allowing the pilot to approach for closer investigation.

Conclusion

The range of remote methane detection systems is increasing rapidly, with new technologies being developed all the time. All these devices, whether hand-held or fitted to aircraft, allow quick, safe and highly targeted identification of leaks – whether beneath the pavement, in a city or across hundreds of kilometres of Alaskan tundra. This not only helps prevent wasteful and costly emissions – it also ensures personnel working on or near the pipelines are not exposed to unnecessary danger.

Because the use of natural gas is increasing worldwide we foresee rapid technological advances in remote gas detection in applications as diverse as leak survey, transmission integrity, plant and facilities management, agriculture and waste management, as well as process engineering applications such as coke and steel production. Each of these areas have situations where access may be difficult, combined with the need to put personnel protection at the top of the agenda. Opportunities for remote methane detectors are therefore growing all the time.

 

Identifying Leaks from Natural Gas pipelines at a Safe Distance

The use of natural gas, of which methane is the principle component, is increasing worldwide. It also has many industrial uses, such as the manufacture of chemicals like ammonia, methanol, butane, ethane, propane and acetic acid; it is also an ingredient in products as diverse as fertilizer, antifreeze, plastics, pharmaceuticals and fabrics.

Natural gas is transported in several ways: through pipelines in gaseous form; as liquefied natural gas (LNG) or compressed natural gas (CNG). LNG is the normal method for transporting the gas over very long distances, such as across oceans, while CNG is usually carried by tanker trucks over short distances. Pipelines are the preferred transport choice for long distances over land (and sometimes offshore), such as between Russia and central Europe. Local distribution companies also deliver natural gas to commercial and domestic users across utility networks within countries, regions and municipalities.

Regular maintenance of gas distribution systems is essential. Identifying and rectifying gas leaks is also an integral part of any maintenance programme, but it is notoriously difficult in many urban and industrial environments, as the gas pipes may be located underground, overhead, in ceilings, behind walls and bulkheads or in otherwise inaccessible locations such as locked buildings. Until recently, suspected leaks from these pipelines could lead to whole areas being cordoned off until the location of the leak was found.

Precisely because conventional gas detectors – such as those utilising catalytic combustion, flame ionisation or semiconductor technology – are not capable of remote gas detection and are therefore unable to detect gas leaks in hard to access pipelines, there has been a lot of recent research into ways of detecting methane gas remotely.

Remote Detection

Cutting edge technologies are now becoming available which allow the remote detection and identification of leaks with pinpoint accuracy. Hand-held units, for example, can now detect methane at distances of up to 100 metres, while aircraft-mounted systems can identify leaks half a kilometre away. These new technologies are transforming the way natural gas leaks are detected and dealt with.

Remote sensing is achieved using infrared laser absorption spectroscopy. Because methane absorbs a specific wavelength of infrared light, these instruments emit infrared lasers. The laser beam is directed to wherever the leak is suspected, such as a gas pipe or a ceiling. Because some of the light is absorbed by the methane, the light received back provides a measurement of absorption by the gas. A useful feature of these systems is the fact that the laser beam can penetrate transparent surfaces, such as glass or perspex, so it may be possible to test an enclosed space prior to entering it. The detectors measure the average methane gas density between the detector and target. Readings on the handheld units are given in ppm-m (a product of the concentration of methane cloud (ppm) and path length (m)). In this way, methane leaks can be quickly confirmed by pointing a laser beam towards the suspected leak or along a survey line, for example.

An important difference between the new technology and conventional methane detectors is that the new systems measure average methane concentration, rather than detecting methane at a single point – this gives a more accurate indication of the severity of the leak.

Applications for hand-held devices include:

  • Pipeline surveys
  • Gas plant
  • Industrial and commercial property surveys
  • Emergency call out
  • Landfill gas monitoring
  • Road surface survey

Municipal Distribution Networks

The benefits of remote technology for monitoring pipelines in urban settings are now being realised.

The ability of remote detection devices to monitor gas leaks from a distance makes them extremely useful tools in emergencies. Operators can stay away from potentially dangerous leak sources when checking the presence of gas in closed premises or confined spaces as the technology allows them to monitor the situation without actually gaining access. Not only is this process easier and quicker, but it is also safe. Moreover, it is not affected by other gases present in the atmosphere since the detectors are calibrated to only detect methane – therefore there is no danger of getting false signals, which is important in emergency situations.

The principle of remote detection is also applied when inspecting risers (the above-ground pipes carrying gas to the customers’ premises and normally running along the building outside walls). In this case, the operators point the device towards the pipe, following its route; they can do this from ground level, without having to use ladders or access the customers’ properties.

Hazardous Areas

In addition to detecting gas leaks from municipal distribution networks, explosion-proof, ATEX approved devices can be used in Zone 1 hazardous areas such as petrochemical plants, oil refineries, LNG terminals and vessels, as well as certain mining applications.

When inspecting an LNG/LPG underground tank, for example, an explosion-proof device would be required within 7.5 metres of the tank itself and one metre around the safety valve. Operators therefore need to be fully aware of these restrictions and equipped with the appropriate equipment type.

GPS Coordination

Some instruments now allow spot methane readings to be taken at various points around a site – such as an LNG terminal – automatically generating GPS tracking of the measurement readings and locations. This makes return trips for additional investigations far more efficient, while also providing a bona-fide record of confirmed inspection activity – often a prerequisite for regulatory compliance.

Aerial Detection

Moving beyond hand-held devices, there are also remote methane detectors which can be fitted to aircraft and which detect leaks from gas pipelines over hundreds of kilometres. These systems can detect methane levels at concentrations as small as 0.5ppm up to 500 metres away and include a real-time moving map display of gas concentrations as the survey is conducted.

The way these systems work is relatively simple. A remote detector is attached beneath the aircraft’s fuselage (usually a helicopter). As with the handheld device, the unit produces an infrared laser signal, which is deflected by any methane leakage within its path; higher methane levels result in more beam deflection. These systems also utilise GPS, so the pilot can follow a real-time moving map GPS route display of the pipeline, with a real-time display of aircraft path, gas leaks and concentration (in ppm) presented to the crew at all times. An audible alarm can be set for a desired gas concentration, allowing the pilot to approach for closer investigation.

Conclusion

The range of remote methane detection systems is increasing rapidly, with new technologies being developed all the time. All these devices, whether hand-held or fitted to aircraft, allow quick, safe and highly targeted identification of leaks – whether beneath the pavement, in a city or across hundreds of kilometres of Alaskan tundra. This not only helps prevent wasteful and costly emissions – it also ensures personnel working on or near the pipelines are not exposed to unnecessary danger.

Because the use of natural gas is increasing worldwide we foresee rapid technological advances in remote gas detection in applications as diverse as leak survey, transmission integrity, plant and facilities management, agriculture and waste management, as well as process engineering applications such as coke and steel production. Each of these areas have situations where access may be difficult, combined with the need to put personnel protection at the top of the agenda. Opportunities for remote methane detectors are therefore growing all the time.

 

Explosion hazards in inerted tanks and how to avoid them

Hydrogen sulphide (H2S) is known for being extremely toxic, as well as highly corrosive. In an inerted tank environment, it poses an additional and serious hazard combustion which, it is suspected, has been the cause of serious explosions in the past.

Hydrogen sulphide can be present in %vol levels in “sour” oil or gas. Fuel can also be turned ‘sour’ by the action of sulphate-reducing bacteria found in sea water, often present in cargo holds of tankers. It is therefore important to continue to monitor the level of H2S, as it can change, particularly at sea. This H2S can increase the likelihood of a fire if the situation is not properly managed.

Tanks are generally lined with iron (sometimes zinc-coated). Iron rusts, creating iron oxide (FeO). In an inerted headspace of a tank, iron oxide can react with H2S to form iron sulphide (FeS). Iron sulphide is a pyrophore; which means that it can spontaneously ignite in the presence of oxygen

Excluding the elements of fire

A tank full of oil or gas is an obvious fire hazard under the right circumstances. The three elements of fire are fuel, oxygen and an ignition source. Without these three things, a fire can’t start. Air is around 21% oxygen. Therefore, a common means to control the risk of a fire in a tank is to remove as much air as possible by flushing the air out of the tank with an inert gas, such as nitrogen or carbon dioxide. During tank unloading, care is taken that fuel is replaced with inert gas rather than air. This removes the oxygen and prevents fire starting.

By definition, there is not enough oxygen in an inerted environment for a fire to start. But at some point, air will have to be let into the tank – for maintenance staff to safety enter, for example. There is now the chance for the three elements of fire coming together. How is it to be controlled?

  • Oxygen has to be allowed in
  • There may be present FeS, which the oxygen will cause to spark
  • The element that can be controlled is fuel.

If all the fuel has been removed and the combination of air and FeS causes a spark, it can’t do any harm.

Monitoring the elements

From the above, it is obvious how important it is to keep track of all the elements that could cause a fire in these fuel tanks. Oxygen and fuel can be directly monitored using an appropriate gas detector, like Gas-Pro TK. Designed for these specialist environments, Gas-Pro TK automatically copes with measuring a tank full of gas (measured in %vol) and a tank nearly empty of gas (measured in %LEL). Gas-Pro TK can tell you when oxygen levels are low enough to be safe to load fuel or high enough for staff to safely enter the tank. Another important use for Gas-Pro TK is to monitor for H2S, to allow you judge the likely presence of the pryophore, iron sulphide.

Servicing for safety… A visit to the oil refinery

Working in the office makes it easy to focus on the individual tasks and get detached from how our products are making a difference to people’s lives. One of our customers was kind enough to facilitate an onsite visit so that Andrea (our Halma Future Leader on a marketing placement) could see first-hand how our products are used and who the end users are. This meant a visit to an oil refinery to see where our Crowcon portable gas detectors are used.


“The main thing that surprised me was the sheer size of the site. The oil refinery was very spaced out and it took us 10 minutes to walk from the entrance of the site to where the Crowcon engineer’s based. The engineers and employees around different parts of the refinery wore Hi Vis jackets, big safety boots, hard hats and all appeared to have personal gas detectors. During a quick site tour, I learned the products of the oil refinery are not limited to gas or petrol, but also tar, asphalt, lubricants, washing up liquid, paraffin wax and much more.

The products are all stored in big containers with pipes all over the site. Most of the products are highly flammable which explains the big focus on safety. In the distance, there were a few dome shaped containers which are pressurised vessels. If one of them were to explode, it would have a 10 mile blast radius. Suddenly I had the urge to leave and drive about 10 miles.

Crowcon’s engineer base was full of orange T4s, Gas-Pros as well as an army of “Daleks”, I mean Detectives, awaiting calibration and service. While the harshness of this industrial environment was evident from their appearance, they were otherwise in good working order, and the service engineer worked through the devices quickly.

The end users think of them as a simple device they have to wear to do their job, and they like the simplicity and reliability of Crowcon devices. The Detectives get thrown around and Gas-Pros are almost black is comparison to the usual orange, which just showcases how important the robustness of our devices is. The dangers of this working environment are not generally a big concern to the users, this is everyday life to them. Our devices help ensure they go home after a tough shift. Ensuring the devices are functioning properly is down to the service engineers, and they need to think for the users to ensure that the devices are being used properly.

Seeing Crowcon’s devices being used and the number of times someone enquired if the devices are calibrated and ready to go back into action, highlighted just how important use of portables as part of the safety regime  is considered. “Quality” and “robust” is how users describe Crowcon products and even though they may now treat them like the life saving devices they are, the devices are regularly used and valued. They make a very flammable and dangerous environment a safer place to be.”

Working together for safety at sea

Crowcon Detection Instruments is working together with Solent University’s Warsash School of Maritime Science and Engineering – all in the name of teaching engineering cadets, senior Merchant Navy officers, and Superyacht crews.

Solent delivers world-renowned yacht and powerboat design degree programmes, a suite of international maritime studies courses and a wide range of specialist support services for the maritime industry. It is also conducting a large number of research studies that make a real impact on industry thought leadership.

Their partnership with Crowcon makes good sense!  The marine environment is a dangerous one – and not just the more obvious hazards like high seas, storms, or rocks and coral reefs.  Confined spaces on ships, high-risk cargo, and on-ship processes all present potential gas hazards.

To keep mariners safe, gas monitoring equipment is essential.  Gas detection equipment requires specific marine environment testing and certification to ensure suitability to the extreme environments it operates in.  The European Marine Equipment Directive (MED) approval is internationally recognised. Gas detectors used by mariners onboard a vessel registered in an EU country must hold MED approval, and show the wheel mark to demonstrate compliance.

Crowcon has provided the university with demonstration T4 portable multi gas detectors.  T4 provides effective protection against the four most common gas hazards experienced in the marine industry, and is robust and tough enough to deal with the demanding marine environments.  T4 is ideally suited to help vessels comply with multiple SOLAS requirements which dictate the need for gas detection onboard vessels.

John Gouch, lecturer at  Solent University, said: “I have used Crowcon instruments in industry for many years, and know how reliable and trustworthy their gas detectors are. Since joining Warsash 18 months ago, I have been keen to ensure students understand the important part gas detection plays within the on-board safety system.”

“By using demo units of these detectors within our marine engineering courses, we can show the importance of gas detection in a marine environment to hundreds of seafarers and mariners, keeping as many people as possible aware and safe.”

Louise Early, Head of Marketing at Crowcon, said: “We’re really pleased with our partnership with Solent University.  By developing our relationship with training establishments, our safety message gets out to the people who will benefit most. We are always keen to learn from industry and this programme also offers Crowcon further insight into the way in which our equipment is used.”

For more information, visit the Solent University website, or the marine section of our industries page.

What you need to be aware of when…

…zeroing your CO2 detector

Without wishing to sound accusing, where were you the last time you zeroed your CO2 detector?  In your vehicle?  In the office before you travelled to the location you were working in?

It might not have caused you problems so far, but the air around you can make a big difference to the performance of your CO2 detector.

What is zeroing?

Zeroing your detector means calibrating it so its ‘clean air’ gas level indication is correct.

When is zero not really zero?

Many CO2 detectors are programmed to zero at 0.04% CO2 rather than 0%, because 0.04% is the normal volume of CO2 in fresh air.  In this case, when you zero your detector, it automatically sets the baseline level to 0.04%.

What happens if you zero your CO2 monitor where you shouldn’t?

If you zero your detector where you shouldn’t, the actual CO2 concentration could be much higher than the standard 0.04% – up to ten times higher, in some cases.

The end result?  An inaccurate reading, and no true way of knowing how much CO2 you’re actually exposed to.

What are the dangers of CO2?

CO2 is already in the earth’s atmosphere, but it doesn’t take much for it to reach dangerous levels.

  • 1% toxicity can cause drowsiness with prolonged exposure
  • 2% toxicity is mildly narcotic and causes increased blood pleasure, pulse rate, and reduced hearing
  • 5% toxicity causes dizziness, confusion, difficulty in breathing, and panic attacks
  • 8% toxicity causes headaches, sweating and tremors. You’ll lose consciousness after five to ten minutes of exposure.

What can I do to make sure I’m safe?

Only zero your instruments if you really have to, and make sure you zero your detector in fresh air – away from buildings and CO2 emissions, and at arm’s length to make sure your own breath doesn’t affect the reading.

What if I think my zero reading is incorrect?

It’s best to test the instrument with 100% nitrogen to check the real zero point, and then with a known level of CO2 test gas. If the zero gas reading is incorrect, or any other gas reading for that matter, the detector will need a full service calibration – contact your local service provider for help.

If you have a Crowcon detector, you can use our Portables Pro software to correct its zero reading.  For further information, call Crowcon customer support on +44 (0)1235 557711.

Tori’s time at Crowcon

We introduced Tori, the Halma Graduate working with our marketing team, in a previous post.

After completing projects in operations at Diba Industries Inc. in Danbury, CT, USA, and product management at FFE Ltd. in Hitchin, UK, Tori chose to come to Crowcon for her marketing placement. Below, Tori describes why she made that choice and the experiences she has had while working here.

Continue reading “Tori’s time at Crowcon”