Blue Hydrogen – An overview

What is Hydrogen?

Hydrogen is one of the most abundant sources of gas contributing approximately 75% of the gas in our solar system. Hydrogen is found in various things including light, water, air, plants, and animals; however, it is often combined with other elements. The most familiar combination is with oxygen to make water. Hydrogen gas is a colourless, odourless, and tasteless gas which is lighter than air. As it is far lighter than air this means it rises in our atmosphere, meaning it is not naturally found at ground level, but instead must be created. This is done by separating it from other elements and collecting the gas. 

What is Blue Hydrogen?

Blue hydrogen has been described as ‘low-carbon hydrogen’ due to the Steam Reforming Process (SMR) not requiring the release of greenhouse gases. Blue hydrogen is produced from non-renewable energy sources when natural gas is divided into hydrogen and carbon dioxide (CO2) through either Steam Methane Reforming (SMR) or Auto Thermal Reforming (ATR), the CO2 is then captured and stored. This process captures greenhouse gasses, thereby mitigating any impacts on the environment. SMR is the most common method for producing bulk hydrogen and contributes most of the world’s production. This method uses a reformer, which reacts steam at an elevated temperature and pressure with methane as well as a nickel catalyst resulting in production of hydrogen and carbon monoxide. The carbon monoxide is then combined with more steam resulting in more hydrogen and carbon dioxide. The process of ‘capturing’ is completed through Carbon Capture Usage and Storage (CCUS). Alternatively, autothermal reforming uses oxygen and carbon dioxide or steam to react with methane to form hydrogen. The downside of these two methods is that they produce carbon dioxide as a by-product, so carbon capture and storage (CCS) is essential to trap and store this carbon. 

The Scale of Hydrogen Production

The natural gas reforming technology that is available today lends itself to the industrial manufacture of hydrogen on a large scale. A world-class methane reformer can produce 200 million standard cubic feet (MSCF) of hydrogen per day. That is the equivalent amount of hydrogen to support an industrial area or refuel 10,000 lorries. Approximately 150 of these would be needed to completely replace the UK natural gas supply, and we use 2.1% of the world’s natural gas. 

Industrial scale production of blue hydrogen is already possible today, however, improvements in production and efficiency would lead to a further reduction in costs. In most countries who produce hydrogen, blue hydrogen is currently being produced at a lower cost than green, which is still in the earlier stages of its development. With the additionally arrangements of CO2 policy and hydrogen incentives, the demand for hydrogen will continue to rise and with this it will gain in traction, although this would currently require both production technologies for hydrogen to be fully used. 

Advantages of Blue Hydrogen?

By producing blue hydrogen without the need to generate electricity needed for the production of green hydrogen, blue hydrogen could help to conserve scarce land as well as accelerate the shift towards low-carbon energy without hinderance related to land requirements. 

Currently blue hydrogen is less expensive compared to Green hydrogen . With mainstream estimates of blue hydrogen production costing around $1.50 per kg or less when using lower-cost natural gas. Comparatively, Green hydrogen is costs more than two times that amount today, with reductions requiring significant improvements in electrolysis and very low-cost electricity. 

Disadvantages of Blue Hydrogen?

Natural gas prices are on the increase. US researchers when looking into environmental impact over its entire lifecycle of blue hydrogen have found that methane emissions produced when the fossil natural gas is extracted and burned are much less than blue hydrogen due to manufacturing efficiencies. With more methane needing to be extracted in order to make blue hydrogen . As well as it requiring to pass through reformers, pipelines, and ships, of which poses more opportunities for leaks. This research indicates, making blue hydrogen is currently 20% worse for the climate than just using fossil gas. 

The process of making blue hydrogen also requires a lot of energy. For every unit of heat in the natural gas at the start of the process, only 70-75% of that potential heat remains in the hydrogen product. In other words, if the hydrogen is used to heat a building, 25% more natural gas is required to produce blue hydrogen than if it was used directly for heat. 

Is Hydrogen the Future?

The potential of this initiative could increase the use of hydrogen, which may help decarbonise the area’s industrial sector. Hydrogen would be delivered to customers to help reduce emissions from domestic heating, industrial processes and transportation, and CO2 would be captured and shipped to a secure offshore storage location. This could also attract significant investment in the community, support existing employment, and stimulate the creation of local jobs. In the end, if the blue hydrogen industry is to contribute a meaningful role in decarbonisation, it will need to build and operate infrastructure that delivers on its full emission reduction potential. 

For more information, visit our industry page and have a look at some of our other hydrogen resources:

What do you need to know about Hydrogen?

The Dangers of Hydrogen

Green Hydrogen – An Overview

Xgard Bright MPS provides hydrogen detection in energy storage application

Our Partnership with Frontline Safety

The Safety Distribution Industry has transformed a great deal in the last few years, as companies rely more on the use of the Internet to gather information about products, applications and pricing.

Background 

Founded in 2003 and headquartered in Glasgow, Frontline Safety is a global supplier of gas detection, environmental monitoring and occupational safety equipment. Frontline has over 30 years of experience in the service of gas detection systems, providing tailored support  working with individuals and organisations of varying degrees and sizes across various sectors, including oil and gas, energy, general process, chemical, pharmaceutical, and environmental.

Views on Gas Detection

Due to industrial environments having the possibility to house a range of gases for commercial production purposes, a variety of gas detectors may be required, including both portable, multi-gas detectors and fixed detectors, both being an essential part of health and safety requirements. Therefore, providing the most appropriate equipment and service that will meet both the needs of the customer and HSE requirements. 

Working with Crowcon

“As Gas detectors are at the forefront of Frontline Safety’s product offering, our partnership allows Frontline to provide the highest quality possible. Our Partnership with Crowcon allows us to give our customers access to a well-recognised brand. Their extensive gas detection range complements our existing product range and enables us to produce the required equipment to reduce injury to workers within the oil and gas, energy, general process, chemical, pharmaceutical, and environmental industries as well as helping the environment.” As a Crowcon partner, Frontline Safety UK is fully trained and authorised in the use, calibration, servicing, and repair of Crowcon equipment.

Connected Safety: what are gas safety insights?

In a previous blog post, we talked about connected safety and the many benefits it brings to gas detection and the organisations that use it. We also looked at Crowcon’s own connected safety offering, Crowcon Connect, and saw how it can provide vital gas safety insights, which businesses and managers can use to improve productivity, gas detector fleet management and workplace safety.

In this post we will explore in more detail what we mean by ‘gas safety insights’, and how you can use them to achieve better outcomes across your organisation.

What are Gas Safety Insights and why do I need them?

When an organisation uses Crowcon Connect, every time a Crowcon portable gas detector is returned to its docking station (or to its charger, if the worker is off site), a comprehensive collection of gas data is immediately and automatically uploaded to the Crowcon Connect portal. This data can include:

  • Information about that specific device, such as type and gases being detected
  • Who was using it for the work session in question
  • Where that work session took place, and
  • Details of gas exposures, alarm events and detector use.

Once uploaded, this information can be combined with related information, such as:

  • When that specific device is due for calibration or other maintenance, and
  • Fleet-side faults detected per instrument

Together, these data points generate an individual profile for each device, which is useful in its own right when it comes to proving compliance, locating devices and personnel, making sure all calibrations/maintenance events are up to date and scheduling any that are due. However, the benefits of connected safety data go way beyond this.

Record, Analyse and Act on Gas Safety Insights

Not only does connected safety create a profile for each device, but in doing so it also generates a large volume of data that spans time, users at personal and team levels, locations, gas hazard event types and device fleets.

This data is organisational gold! Large volumes of timely, accurate, constantly updated and cross-organisational data allow managers to:

  • Spot patterns (e.g. of device loss, gas exposure, alarm incidents) from multiple perspectives such as the people, sites/locations, times of day, gas hazards and devices involved, to make informed data driven decisions quickly.
  • These patterns can be contextualised in time – it is easy to see if a particular issue is long-established or recent.
  • Events can be differentiated and compared by site/shift/date – almost any parameter you can think of is easily applied.
  • Data points can be combined and compared to optimise outcomes: for example, you can work out the least productive hours on a given site and schedule device downtime (e.g. calibration) for those times to minimise any loss of productivity.

All of this is possible because the accuracy and real-time nature of connected safety means that the data generated is ideal for use with predictive analytics.

Predictive analytics uses historical data to forecast future events and contexts, which allows an organisation to make truly informed decisions at all levels (for example, in terms of focus and staff recruitment/deployment) and create more intelligent strategies, such as maintenance schedules, productivity monitoring and internal processes.

In this way, connected gas safety applications generate wide-ranging gas insights (data) and when these are analysed and then acted upon they can transform performance, process and safety at multiple points within the business.

This is how Crowcon Connect helps businesses to do better through a systematic approach.

Great for Multi-Site Businesses and Fleets

Collecting high quality data and then analysing and proactively using it can help most organisations. However, connected gas safety is particularly useful for multi-site businesses and any business with widely-dispersed gas detection fleets.

For these organisations, connected gas safety also reduces much of the complexity and time involved in manual recording, and provides almost immediate savings in terms of hours spent documenting compliance, retrieving manual records and preparing for audit.

Furthermore, all organisations stand to gain from having an immediately available and real-time, birds-eye view of their devices and relevant information. Connected gas safety insights can be used to:

  • Schedule maintenance with the least possible downtime (minimising the cost of ownership)
  • Ensure that devices are always in the location required and ready for use (which makes it easier to purchase devices cost-effectively, reduces downtime due to lack of available detectors and minimises device loss)
  • Monitor gas levels from various perspectives (by site/team/shift time etc.) and act promptly to control them where required (which may prevent a gas-related disaster)
  • Monitor gas at given sites over given periods to improve environmental and sustainability outcomes and/or demonstrate improvements as needed (for example, prove that methane emissions at a given site have been reduced over time).

In this way, connected gas safety initiatives like Crowcon Connect can make a solid contribution to the profitability, safety and sustainability of businesses, their personnel and projects.

If you would like to know more about using connected gas safety insights in this way, please check out our white paper on connected safety for multi-site businesses by clicking here. You can also take a look at the Crowcon Connect pages on our website by clicking here.

What is Purge Testing and when should I be doing it?

Purge testing is vital when installing, replacing or maintaining a natural gas pipeline or storage tank, or filling new pipework with flammable gas. This process uses an inert gas to clear the enclosed environment of flammable gases prior to air being introduced thereby preventing air and flammable gas mixing. Such mixtures could of course lead to explosive combustion.

What is Purge Testing? 

Purge testing is a key part of the process of making a working environment safe prior to entering it to carry out work. Analysis of the atmosphere in the pipe or enclosure shows the starting point – usually 100% flammable gas. Purge testing is the measurement and reporting of the atmosphere as an inert gas is introduced. As the flammable gas declines to a safe level well below concentrations that would be dangerous in air, the atmosphere is continually analysed, and the flammable gas concentration reported. Once a low concentration has been achieved, air may be introduced. During this phase the flammable gas concentration is analysed to check it remains low, and oxygen concentration is measured to indicate when the atmosphere becomes breathable. Work may then commence – all the while protected by the measurement of flammable gas and oxygen concentration. If, as is likely, the purge testing is being carried out via suction of atmosphere through a sample tube, then this sample tube must at all times and all along its length be held above the flash point of the flammable gas in the tank. This is vital to both your safety and the safety of those working with you.  

Purging removes or displaces hazardous gases from the tank or pipework to prevent them from mixing with the air you need to introduce into the tank to carry out the inspection or maintenance task. The most used and preferred purge gas is Nitrogen, due to its inert properties. After conducting the inspection or maintenance task the reverse process is carried out, reintroducing the inert gas and reducing the oxygen level to near zero prior to allowing natural gas to re-enter. Often a service valve on the line with a standpipe or diffuser attached is cracked to release the venting gas or nitrogen. Purging systems are generally designed to redirect additional gases away from the work area preventing them from remixing with the gas within the tank or pipework. 

Why Conventional Gas Detection isn’t enough 

Traditional gas detection systems are not designed to work in oxygen-deprived environments. This is because they are primarily designed as safety equipment with the specific purpose to detect small traces of target gases in otherwise normal breathable environments. Gas detection equipment designed for use in purge testing activities must be able to function in low oxygen environments and with all contaminants likely to be found in tanks and pipes being purge tested. If sensors can be poisoned by the contaminants present or if there isn’t enough oxygen in the air to enable the selected sensor technology to be used, it may lead to the sensors on the device producing inaccurate results, posing a threat to those working within that environment. An additional point to note to note is that certain gas combinations, concentrations and corrosive liquids may damage the gas detection equipment, rendering it useless. For these reasons, Infrared technology or thermal conductivity is usually chosen as the measurement technology of choice for purge tests. Crowcon uses infrared technology in these applications. A fortunate by-product of that design decision is better accuracy than required over the full sensing range. 

More about Purge testing 

Purge Testing is essential for workers as some may be breathing in toxic gases without even realising it if the sensors on their detection equipment have become defective, don’t measure the required gas type or don’t measure over the required gas range, or environmental range present. Toxic or asphyxiant gas exposure can lead to respiratory issues, significant injury, even death. 

Workers cannot merely rely on a standard confined space gas detection instrument to adequately test for safe conditions during this process, as the high gas level may overwhelm or damage an LEL (Lower Explosive Limit) sensor depending upon type. Or the sensor may not function in an oxygen-depleted atmosphere leading to an unreported dangerous condition. 

What products do we offer? 

Our Gas-Pro TK is a specialised tank monitor that is perfect for customers who want to purge, free, or maintain storage and transportation tanks due to its integrated auto switching dual range IR sensor technology. Other sensors in the product, for example the H2S (Hydrogen Sulphide) sensor option cover other potential risks if gases vent during purging. 

Our Partnership with Bence Plumbing & Heating

Established in February 2021 Bence Plumbing & Heating dedicated to Bathroom, Plumbing and Heating is part of the Bence Group, Gloucestershire’s leading Independent Builders Merchant, established in Cheltenham in 1854. Bence Plumbing & Heating serves all customers plumbing and heating needs, with daily deliveries in Gloucestershire and access to a huge range of products from our main depot in Cheltenham. Bence provide a personal touch, bespoke service with a vast knowledge of the bathroom, plumbing and heating sector.

Partnership with Crowcon

We are delighted to be working with Bence Plumbing & Heating to provide Anton by Crowcon. This partnership will work hand in hand with Bence’s current customer database already present from over 160 years business trading. Bence Plumbing & Heating will also become a drop-in centre for servicing. Allowing local customers to Drop their devices into Bence Plumbing & Heating at a time convenient to them and they will work with us to facilitate the annual calibration.

Bence is a new partner for our gas analysers, our Sprint Pro stops you from having to store, charge, carry, calibrate and transport multiple devices. Our device allows you to conduct all critical test measurements with just one high performance, innovative solution.

The Future of Connected Safety

Connected safety is becoming a popular phrase in health and safety settings generally, and gas detection in particular. That’s a good thing – because it’s no overstatement to describe connected safety as an evolutionary step in gas monitoring and protection, and it’s a field that is developing all the time.

In this post we’ll establish exactly what connected safety means for anyone monitoring gas hazards, and find out why it pays to take note of developments in this area.

What is Connected Safety?

In gas monitoring terms, connected safety refers to using the internet of things (IoT) to connect gas detection devices (for example, portable gas monitors) to software that pulls the gas exposure information and other data stored on the detector (the identity of the user for any given session, the extent to which the device was used correctly, etc.), analyses it and presents it in useful forms.

By wirelessly connecting each gas monitor – and the data it collects during each work session – to a specialist software package, you can spot patterns of gas exposure, patterns of use and misuse of detectors and automatically store all of the information you need to quickly prove regulatory and legal compliance.

When this information is scaled up across entire device fleets, naturally the data it produces also scales up and can be aggregated. And if that data is acted upon, it can improve safety across your business and drive better, more informed decisions.

That is, in a nutshell, how our Crowcon Connect solution works.

How does Crowcon Connect work for Connected Safety?

Crowcon Connect is Crowcon’s own software, which works with all current (manufactured from 2004 onwards) and future Crowcon portable gas detectors. Because we own and develop the software, we are constantly upgrading it in light of customer feedback and can make customised versions where required (although it’s also really easy for users to configure the standard dashboard to suit their own needs).

Quick User Assignment easily links devices, events and people

For each work session, anyone who needs a portable detector simply scans in their ID (for example, their work ID badge) and is allocated a device. If they don’t like that device (for example, if it’s not suitable for the job in hand) they can simply re-scan their badge to be assigned another detector.

When the user returns the detector to its dock at the end of the work session, the dock transfers the data to the Crowcon Connect portal while simultaneously un-allocating the device, ready for the next user.

The data transferred to the portal includes details of the user and the device, exposure and alarm information and a full range of gas data. Once that data reaches the portal, Crowcon Connect can crunch the numbers and work its magic.

Connected Safety streamlines processes, improves outcomes

The Crowcon Connect user interface is very intuitive and easy to customise, which means every user can see precisely the information that matters to them, whenever and wherever they need it.

For example, it becomes very straightforward to prove regulatory compliance when real-time data is available, and easy to spot potentially dangerous areas when alarm data begins to cluster. Mundane tasks – such as flagging those detectors that are due for calibration and/or maintenance – can be automated, which saves time and reduces the risk of human error.

Of course you can also aggregate fleet-wide, site-wide and/or team-wide data, which lets you to spot patterns (for example, of exposure events or device losses) and make relevant changes. This helps you to improve your site and workforce safety, and you can always locate detectors (and any workers attached to them) in real time.

Is Connected Safety the way of the future?

In a word, yes. We live in a data-driven world and the use of information is driving improvements in all sectors, gas detection included. Our increasing (and increasingly widespread) reliance on technology is only going to amplify that.

After all, data can do much to offset the shortcomings of human management. Data is objective, not driven by assumptions or bias, and gives an honest reflection of what is actually happening in the field, rather than what is intended to happen. If you’ve ever worn a fitness tracker for a while, you’ll get this idea!

However, data analytics are only useful if they are based on top quality, current information – and that’s where connected safety comes in. Connected safety applications collect information accurately and in real time. If you manage gas monitoring, with data straight from the device you will be operating on the basis of objective, trustworthy information. What is more, you can use that information to make people safer – and even save lives.

We’ll be sharing some more posts about connected safety in the coming weeks, so please come back to this page for those. In the meantime, why not have a look at our white paper on connected safety for more detailed information, or check out our Crowcon Connect pages?

Green Hydrogen – An Overview

What is Hydrogen?

Hydrogen is one of the most abundant sources of gas contributing approximately 75% of the gas in our solar system. Hydrogen is found in various things including light, water, air, plants, and animals, however, it is often combined with other elements. The most familiar combination is with oxygen to make water. Hydrogen gas is a colourless, odourless, and tasteless gas which is lighter than air. As it is far lighter than air this means it rises in our atmosphere, meaning it is not naturally found at ground level, but instead must be created. This is done by separating it from other elements and collecting the gas. 

What is Green Hydrogen?

Green hydrogen is produced using electricity to power an electrolyser that separates hydrogen from the water molecule producing oxygen as a by-product. Excess electricity can be used by electrolysis to create hydrogen gas that can be stored for the future. Essentially, if the electricity used to power the electrolysers originates from renewable sources such as wind, solar or hydro, or if it originates from nuclear power – fission or fusion, then the hydrogen produced is green, in which the only carbon emissions are from those embodied in the generation infrastructure. Electrolysers are the most significant technology used for synthesising zero-carbon hydrogen fuel using renewable energy, known as green hydrogen. Green hydrogen and derivatives are an essential solution to the decarbonisation of heavy industry sectors and experts suggest will constitute up to 25% of total final energy use in a net-zero economy. 

Advantages of Green Hydrogen

It is 100% sustainable as it does not emit polluting gases either through combustion or production. Hydrogen can be easily stored thereby allowing it to be used later for other purposes and/or at the time of production. Green hydrogen can be converted into electricity or synthetic gas and can be used for a variety of domestic, commercial, industrial or mobility purposes. Additionally, hydrogen can be mixed with natural gas at ratio of up to 20% without modification of the gas main infrastructure or gas appliances.  

Disadvantages of Green Hydrogen

Although hydrogen is 100% sustainable it currently comes at a high cost than fossil fuels due to renewable energy being more expensive to produce. The overall production of hydrogen requires more energy than some other fuels, so unless the electricity required to produce hydrogen comes from a renewable source the entire process of production may be counterproductive. Additionally, hydrogen is a highly flammable gas, therefore extensive safety measures are essential to prevent leakage and explosions. 

What is The Green Hydrogen Catapult (GHC) and what does it aim to achieve? 

Members of the Green Hydrogen Catapult (GHC) are a coalition of leaders with an ambition to expand and grow Green Hydrogen Development. As of November 2021, they have announced a commitment for 45 GW of electrolysers to be developed with secured financing by 2026 with additional targeted commissioning for 2027. This is a vastly increased ambition as the initial target set by the coalition at the time of its launch in December 2020 was 25 GW. Green hydrogen has been seen as a critical element in creating a sustainable energy future as well as being one of the largest business opportunities in recent times. And has been said to be the key to allowing for the decarbonisation of sectors like steel manufacturing, shipping, and aviation.  

Why Hydrogen is seen as a cleaner future?

We live in a world in which one of the collective sustainability aims is to decarbonise the fuel we use by 2050. To achieve this, decarbonising the production of a significant fuel source like hydrogen, giving rise to green hydrogen, is one of the key strategies as production of non-green hydrogen is currently responsible for more than 2 % of total global CO2 emissions. During combustion, chemical bonds are broken and constituent elements combined with oxygen. Traditionally, Methane gas has been the natural gas of choice with 85% of homes and 40% of the UK’s electricity depending on natural gas. Methane is a cleaner fuel than coal, however, when it is burnt carbon dioxide is produced as a waste product which, on entering the atmosphere, starts contributing to climate change. Hydrogen Gas when burnt only produces water vapour as a waste product, which has no global warming potential. 

The UK Government have seen the use of hydrogen as a fuel and hence hydrogen homes as a way forward for a greener way of living, and have set a target for a thriving hydrogen economy by 2030. Whilst Japan, South Korea and China are on course to make considerable progress in hydrogen economy development with targets set to surpass the UK by 2030. Similarly, the European Commission has presented a hydrogen strategy in which hydrogen could support 24% of Europe’s energy by 2050. 

For more information, visit our industry page and have a look at some of our other hydrogen resources:

What do you need to know about Hydrogen?

The Dangers of Hydrogen

Blue Hydrogen – An Overview

Xgard Bright MPS provides hydrogen detection in energy storage application

How Long will my Gas Sensor Last?

Gas detectors are used extensively within many industries (such as water treatment, refinery, petrochemical, steel and construction to name a few) to protect personnel and equipment from dangerous gases and their effects. Users of portable and fixed devices will be familiar with the potentially significant costs of keeping their instruments operating safely over their operational life. Gas sensors are understood to provide a measurement of the concentration of some analyte of interest, such as CO (carbon monoxide), CO2 (carbon dioxide), or NOx (nitrogen oxide). There are two most used gas sensors within industrial applications: electrochemical for toxic gases and oxygen measurement, and pellistors (or catalytic beads) for flammable gases. In recent years, the introduction of both Oxygen and MPS (Molecular Property Spectrometer) sensors have allowed for improved safety.  

How do I know when my sensor has failed? 

There have been several patents and techniques applied to gas detectors over the past few decades which claim to be able to determine when an electrochemical sensor has failed. Most of these however, only infer that the sensor is operating through some form of electrode stimulation and might provide a false sense of security. The only sure method of demonstrating that a sensor is working is to apply test gas and measure the response: a bump test or full calibration. 

Electrochemical Sensor  

Electrochemical sensors are the most used in diffusion mode in which gas in the ambient environment enters through a hole in the face of the cell. Some instruments use a pump to supply air or gas samples to the sensor. A PTFE membrane is fitted over the hole to prevent water or oils from entering the cell. Sensor ranges and sensitivities can be varied in design by using different size holes. Larger holes provide higher sensitivity and resolution, whereas smaller holes reduce sensitivity and resolution but increase the range. 

Factors affecting Electrochemical Sensor Life 

There are three main factors that affect the sensor life including temperature, exposure to extremely high gas concentrations and humidity. Other factors include sensor electrodes and extreme vibration and mechanical shocks.  

Temperature extremes can affect sensor life. The manufacturer will state an operating temperature range for the instrument: typically -30˚C to +50˚C. High quality sensors will, however, be able to withstand temporary excursions beyond these limits. Short (1-2 hours) exposure to 60-65˚C for H2S or CO sensors (for example) is acceptable, but repeated incidents will result in evaporation of the electrolyte and shifts in the baseline (zero) reading and slower response. 

Exposure to extremely high gas concentrations can also compromise sensor performance. Electrochemical sensors are typically tested by exposure to as much as ten-times their design limit. Sensors constructed using high quality catalyst material should be able to withstand such exposures without changes to chemistry or long-term performance loss. Sensors with lower catalyst loading may suffer damage.  

The most considerable influence on sensor life is humidity. The ideal environmental condition for electrochemical sensors is 20˚Celsius and 60% RH (relative humidity). When the ambient humidity increases beyond 60%RH water will be absorbed into the electrolyte causing dilution. In extreme cases the liquid content can increase by 2-3 times, potentially resulting in leakage from the sensor body, and then through the pins. Below 60%RH water in the electrolyte will begin to de-hydrate. The response time may be significantly extended as the electrolyte or dehydrated. Sensor electrodes can in unusual conditions be poisoned by interfering gases that adsorb onto the catalyst or react with it creating by-products which inhibit the catalyst.  

Extreme vibration and mechanical shocks can also harm sensors by fracturing the welds that bond the platinum electrodes, connecting strips (or wires in some sensors) and pins together.  

‘Normal’ Life Expectancy of Electrochemical Sensor 

Electrochemical sensors for common gases such as carbon monoxide or hydrogen sulphide have an operational life typically stated at 2-3 years. More exotic gas sensor such as hydrogen fluoride may have a life of only 12-18 months. In ideal conditions (stable temperature and humidity in the region of 20˚C and 60%RH) with no incidence of contaminants, electrochemical sensors have been known to operate more than 4000 days (11 years). Periodic exposure to the target gas does not limit the life of these tiny fuel cells: high quality sensors have a large amount of catalyst material and robust conductors which do not become depleted by the reaction. 

Pellistor Sensor 

Pellistor sensors consist of two matched wire coils, each embedded in a ceramic bead. Current is passed through the coils, heating the beads to approximately 500˚C. Flammable gas burns on the bead and the additional heat generated produces an increase in coil resistance which is measured by the instrument to indicate gas concentration. 

Factors affecting Pellistor Sensor Life 

The two main factors that affect the sensor life include exposure to high gas concentration and poising or inhibition of the sensor. Extreme mechanical shock or vibration can also affect the sensor life. The capacity of the catalyst surface to oxidise the gas reduces when it has been poisoned or inhibited. Sensor life more than ten years is common in applications where inhibiting or poisoning compounds are not present. Higher power pellistors have greater catalytic activity and are less vulnerable to poisoning. More porous beads also have greater catalytic activity as their surface volume in increased. Skilled initial design and sophisticated manufacturing processes ensure maximum bead porosity. Exposure to high gas concentrations (>100%LEL) may also compromise sensor performance and create an offset in the zero/base-line signal. Incomplete combustion results in carbon deposits on the bead: the carbon ‘grows’ in the pores and creates mechanical damage. The carbon may however be burned off over time to re-reveal catalytic sites. Extreme mechanical shock or vibration can in rare cases also cause a break in the pellistor coils. This issue is more prevalent on portable rather than fixed-point gas detectors as they are more likely to be dropped, and the pellistors used are lower power (to maximise battery life) and thus use more delicate thinner wire coils. 

How do I know when my sensor has failed? 

A pellistor that has been poisoned remains electrically operational but may fail to respond to gas. Hence the gas detector and control system may appear to be in a healthy state, but a flammable gas leak may not be detected. 

Oxygen Sensor 

Long Life 02 Icon

Our new lead-free, long-lasting oxygen sensor does not have compressed strands of lead the electrolyte has to penetrate, allowing a thick electrolyte to be used which means no leaks, no leak induced corrosion, and improved safety. The additional robustness of this sensor allows us to confidently offer a 5-year warranty for added piece of mind. 

Long life-oxygen sensors have an extensive lifespan of 5-years, with less downtime, lower cost of ownership, and reduced environmental impact. They accurately measure oxygen over a broad range of concentrations from 0 to 30% volume and are the next generation of O2 gas detection. 

MPS Sensor  

MPS sensor provides advanced technology that removes the need to calibrate and provides a ‘True LEL (lower explosive limit)’ for reading for fifteen flammable gases but can detect all flammable gases in a multi-species environment, resulting in lower ongoing maintenance costs and reduced interaction with the unit. This reduces risk to personnel and avoids costly downtime. The MPS sensor is also immune to sensor poisoning.  

Sensor failure due to poisoning can be a frustrating and costly experience. The technology in the MPS™ sensor is not affected by contaminates in the environment. Processes that have contaminates now have access to a solution that operates reliably with fail safe design to alert operator to offer a peace of mind for personnel and assets located in hazardous environment. It is now possible to detect multiple flammable gases, even in harsh environments, using just one sensor that does not require calibration and has an expected lifespan of at least 5 years. 

Oxygen Depletion Risks from Nitrogen in Pharmaceutical Processing

Within the air, a normal concentration of oxygen is 21%, while nitrogen makes up 78% of the rest of the atmosphere along with some trace gases. Inert gases such as nitrogen, argon and helium although aren’t toxic, they do not help to support human breathing. These are odourless, colourless and tasteless making them undetectable. An increase in the volume of any other gases that are not oxygen can lead to a circumstance in which individuals may be at risk of asphyxiation which can cause serious injury or even death. This removal of oxygen gas in the air we breathe makes having an oxygen depletion sensor not just useful, but essential to maintaining life.

How is Nitrogen used to control oxygen levels?

Nitrogen (N2) can be used to control levels of oxygen in a laboratory. When carrying out tasks within the pharmaceutical industry, when transferring products or packaging process, nitrogen is used. Nitrogen is used to take oxygen away from the packaging prior to it being sealed, to make certain the product is preserved. As a result of this the need for an oxygen deficiency monitor is very important. Fixed or portable devices have the ability to detect oxygen levels within a laboratory, plant or utility room. Fixed gas detection systems are suitable for monitoring an area or room, whereas a portable gas detector is designed to be worn on the person within your breathing area.

What are the Risks of Oxygen depletion?

There are three main reasons why monitors are needed; it is essential to detect oxygen deficiencies or enrichment as too little oxygen can prevent the human body from functioning leading to the worker losing consciousness. Unless the oxygen level can be restored to a normal level the worker is at risk of potential death. An atmosphere is deficient when the concentration of O2 is less than 19.5%. Consequently, an environment that has too much oxygen in it is equally dangerous as this constitutes a greatly increased risk of fire and explosion, this is considered when the concentration level of O2 is over 23.5%.

In the absence of adequate ventilation, the level of oxygen can be reduced surprisingly quickly by breathing and combustion processes. Oxygen levels may also be depleted due to dilution by other gases such as carbon dioxide (also a toxic gas), nitrogen or helium, and chemical absorption by corrosion processes and similar reactions. Oxygen sensors should be used in environments where any of these potential risks exist. When locating oxygen sensors, consideration needs to be given to the density of the diluting gas and the “breathing” zone (nose level). For example, helium is lighter than air and will displace the oxygen from the ceiling downwards whereas carbon dioxide, being heavier than air, will predominately displace the oxygen below the breathing zone. Ventilation patterns must also be considered when locating sensors.

Oxygen monitors usually provide a first-level alarm when the oxygen concentration has dropped to 19% volume. Most people will begin to behave abnormally when the level reaches 17%, and hence a second alarm is usually set at this threshold. Exposure to atmospheres containing between 10% and 13% oxygen can bring about unconsciousness very rapidly; death comes very quickly if the oxygen level drops below 6% volume. Oxygen sensors are often installed in laboratories where inert gases (e.g., nitrogen) are stored in enclosed areas.

How do Fixed or Portable Devices Detect Oxygen?

Crowcon offer a range of portable monitors; Gas-Pro portable multi gas detector offers detection of up to 5 gases in a compact and rugged solution. It has an easy-to-read top mount display making it easy to use and optimal for confined space gas detection. An optional internal pump, activated with the flow plate, takes the pain out of pre-entry testing and allows Gas-Pro to be worn either in pumped or diffusion modes.

T4 portable 4-in-1 gas detector provides effective protection against oxygen depletion. T4 multi gas detector now comes with improved detection of pentane, hexane and other long chain hydrocarbons. Offering you compliance, robustness and low cost of ownership in a simple to use solution. T4 contains a wide range of powerful features to make everyday use easier and safer.

Crowcon’s fixed detector XgardIQ is an intelligent and versatile fixed detector and transmitter compatible with Crowcon’s full range of sensor technologies. Available fitted with a variety of sensors for fixed flammable, toxic, oxygen or H2S gas detection. Providing analogue 4-20mA and RS-485 Modbus signals as standard, XgardIQ is optionally available with Alarm and Fault relays and HART communications. The 316 stainless steels are available with three M20 or 1/2“NPT cable entries. This device is also (SIL-2) Safety integrity level 2 certified fixed detector.

Confined Space Training and Awareness

What is Confined Space and is it Classified?

Confined Space is a global concern. In this blog we are referencing the UK’s Health and Safety Executive’s dedicated documentation, as well as the United States OSHA ones, as these are broadly familiar to other countries own health and safety procedures. 

A Confined Space is a location that is substantially enclosed although not always entirely, and where serious injury can occur from hazardous substances or conditions within the space or nearby such as a lack of oxygen. As they are so dangerous, it has to be noted that any entry to confined spaces must be the only and final option in order to carry out work. Confined Spaces Regulations 1997. Approved Code of Practice, Regulations and guidance is for employees that work in Confined Spaces, those who employ or train such people and those who represent them. 

The Risks and Hazards:VOCs

A Confined Space that contains certain hazardous conditions may be considered a permit-required confined space under the standard. Permit-required confined spaces can be immediately dangerous to operator’s lives if they are not properly identified, evaluated, tested and controlled. Permit-required confined space can a defined as a confined space where there is a risk of one (or more) of the following: 

  • Serious injury due to fire or explosion 
  • Loss of consciousness arising from increased body temperature  
  • Loss of consciousness or asphyxiation arising from gas, fume, vapour, or lack of oxygen  
  • Drowning from an increase in the level of a liquid  
  • Asphyxiation arising from a free-flowing solid or being unable to reach a respirable environment due to being trapped by such a free-flowing solid 

These arise from the following hazards: 

  • Flammable substances and oxygen enrichment (read more) 
  • Excessive heat 
  • Toxic gas, fume or vapours 
  • Oxygen deficiency 
  • Ingress or pressure of liquids 
  • Free-flowing solid materials 
  • Other hazards (such as exposure to electricity, loud noise or loss of structural integrity of the space) vocs

Confined Space Identification

HSE classify Confined Spaces as any place, including any chamber, tank, vat, silo, pit, trench, pipe, sewer, flue, well or other similar space in which, by virtue of its enclosed nature, there arises a reasonably foreseeable specified risk, as outlined above.  

Most Confined Spaces are easy to identify although, identification is sometimes required as a Confined Space is not necessarily be an enclosed on all sides – some, such as vats, silos and ships’ hold, may have open tops or sides. Nor are exclusive to a small and/or difficult to work in space – some, like grain silos and ships’ holds, can be very large. They may not be that difficult to get in or out of – some have several entrances/exits, others have quite large openings or are apparently easy to escape from. Or a place where people do not regularly work – some Confined Spaces (such as those used for spray painting in car repair centres) are used regularly by people in the course of their work 

There may be instances where a space itself may not be defined as a Confined Space, however, while work is ongoing, and until the level of oxygen recovers (or the contaminants have dispersed by ventilating the area), it is classified as a Confined Space. Example scenarios are: welding that would consume some of the available breathable oxygen, a spray booth during paint spraying; using chemicals for cleaning purposes which can add volatile organic compounds (VOCs) or acidic gases, or an area subjected to significant rust which has reduced available oxygen to dangerous levels. 

What are the Rules and Regulations for Employers?

OSHA (Occupational Safety and Health Administration) have released a factsheet that highlights all the rules and regulations of residential workers in Confined Spaces.  

Under the new standards, the obligation of the employer will depend on what type of employer they are. The controlling contractor is the main point of contact for any information about PRCS on site.  

The Host employer: The employer who owns or manages the property where the construction work is taking place. 

Employer can’t rely solely on the emergency services for rescue. A dedicated service must be ready to act in the event of an emergency.  The arrangements for emergency rescue, required under regulation 5 of the Confined Spaces Regulations, must be suitable and sufficient. If necessary, equipment to enable resuscitation procedures to be carried out should be provided. The arrangements should be in place before any person enters or works in a confined space. 

The Controlling contractor: The employer who has overall responsibility for construction at the worksite. 

 The Entry employer or Sub Contractor: Any employer who decides that an employee it directs will enter a permit-required confined space. 

Employees have the responsibility to raise concern such as helping highlight any potential workplace risks, ensuring that health and safety controls are practical and increasing the level of commitment to working in a safe and healthy way.  

Testing/ Monitoring the Atmosphere:

Prior to entry, the atmosphere within a confined space should be tested to check the oxygen concentration and for the presence of hazardous gas, fume or vapour. Testing should be carried out where knowledge of the confined space (e.g. from information about its previous contents or chemicals used in a previous activity in the space) indicates that the atmosphere might be contaminated or to any extent unsafe to breathe, or where any doubt exists as to the condition of the atmosphere. Testing should also be carried out if the atmosphere is has been previously contaminated and was ventilated as a consequence (HSE Safe Work in Confined Spaces: Confined Spaces Regulations 1997 and Approved Codes of Practice). 

The choice of monitoring and detecting equipment will depend on the circumstances and knowledge of possible contaminants and you may need to take advice from a competent person when deciding on the type that best suits the situation – Crowcon can help with this.  

Monitoring equipment should be in good working order. Testing and calibration may be included in daily operator checks (a response check) where identified as necessary in accordance with our specification.  

Where there is a potential risk of flammable or explosive atmospheres, equipment specifically designed to measure for these will be required and certified Intrinsically Safe. All such monitoring equipment should be specifically suited for use in potentially flammable or explosive atmospheres. Flammable gas monitors must be calibrated for the different gases or vapours which the risk assessment has identified could be present and these may need alternative calibrations for different confined spaces. Get in touch if you require any help 

Testing should be carried out by people who are competent in the practice and aware of the existing standards for the relevant airborne contaminates being measured and are also instructed and trained in the risks involved in carrying out such testing in a confined space. Those carrying out the testing should also be capable of interpreting the results and taking any necessary action. Records should be kept of the results and findings ensuring that readings are taken in the following order: oxygen, flammable and then toxics. 

The atmosphere in a confined space can often be tested from the outside, without the need for entry, by drawing samples through a long probe. Where flexible sample tubing is used, ensure that it does not draw water or is not impeded by kinks, blockages, or blocked or restricted nozzles, in-line filters can help with this. 

What products are Intrinsically Safe and are suitable for Confined Space Safety?

These products are Certified to meet local Intrinsically Safe Standards.  

The Gas-Pro portable multi gas detector offers detection of up to 5 gases in a compact and rugged solution. It has an easy-to-read top mount display making it easy to use and optimal for confined space gas detection. An optional internal pump, activated with the flow plate, takes the pain out of pre-entry testing, and allows Gas-Pro to be worn either in pumped or diffusion modes. 

Gas-Pro TK offers the same gas safety benefits as the regular Gas-Pro, while offering Tank Check mode which can auto-range between %LEL and %Volume for inerting applications. 

T4 portable 4-in-1 gas detector provides effective protection against 4 common gas hazards: carbon monoxide, hydrogen sulphide, flammable gases, and oxygen depletion. The T4 multi gas detector now comes with improved detection of pentane, hexane, and other long chain hydrocarbons. 

Tetra 3 portable multi gas monitor can detect and monitor the four most common gases (carbon monoxide, methane, oxygen, and hydrogen sulphide), but also an expanded range: ammonia, ozone, sulphur dioxide, H2 filtered CO (for steel plants).