The Benefits of MPS Sensors 

Developed by NevadaNano, Molecular Property Spectrometer™ (MPS™) sensors represent the new generation of flammable gas detectors. MPS™ can quickly detect 18 characterised flammable gases at once. Until recently, anyone who needed to monitor flammable gases had to select either a traditional flammable gas detector containing a pellistor sensor calibrated for a specific gas, or containing an infra-red (IR) sensor which also varies in output according to the flammable gas being measured, and hence needs to be calibrated for each gas. While these remain beneficial solutions, they are not always ideal. For example, both sensor types require regular calibration and the catalytic pellistor sensors also need frequent bump testing to ensure they have not been damaged by contaminants (known as ‘sensor poisoning’ agents) or by harsh conditions. In some environments, sensors must frequently be changed, which is costly in terms of both money and downtime, or product availability. IR technology cannot detect hydrogen – which has no IR signature, and both IR and pellistor detectors sometimes incidentally detect other (i.e., non-calibrated) gases, giving inaccurate readings that may trigger false alarms or concern operators. 

The MPS™ sensor delivers key features that provide real world tangible benefits to operator and hence workers. These include: 

No calibration  

When implementing a system containing a fixed head detector, it is common practice to service on a recommended schedule defined by manufacturer. This entails ongoing regular costs as well potentially disrupting production or process in order service or even gain access to detector or multiple detectors. There may also be a risk to personnel when detectors are mounted in particularly hazardous environments. Interaction with an MPS sensor is less stringent because there are no unrevealed failure modes, provided air is present. It would be wrong to say there is no calibration requirement. One factory calibration, followed by a gas test when commissioning is sufficient, because there is an internal automated calibration being performed every 2 seconds throughout the working life of the sensor. What is really meant is – no customer calibration. 

The Xgard Bright with MPS™ sensor technology does not require calibration. This in turn reduces the interaction with the detector resulting in a lower total cost of ownership over the sensor life cycle and reduced risk to personnel and production output to complete regular maintenance. It is still advisable to check the cleanliness of the gas detector from time to time, since gas can’t get through thick build ups of obstructive material and wouldn’t then reach the sensor. 

Multi species gas – ‘True LEL’™  

Many industries and applications use or have as a by-product multiple gases within the same environment. This can be challenging for traditional sensor technology which can detect only a single gas that they were calibrated for at the correct level and can result in inaccurate reading and even false alarms which can halt process or production if another flammable gas type is present. The lack of response or over response frequently faced in multi gas environments can be frustrating and counterproductive compromising safety of best user practices. The MPS™ sensor can accurately detect multiple gases at once and instantly identify gas type. Additionally, the MPS™ sensor has a on board environmental compensation and does not require an externally applied correctional factor. Inaccurate readings and false alarms are a thing of the past.  

No sensor poisoning  

In certain environments traditional sensor types can be under risk of poisoning. Extreme pressure, temperature, and humidity all have the potential to damage sensors whist environmental toxins and contaminants can ‘poison’ sensors, leading to severely compromised performance. Detectors in environments where poisons or inhibitors may be encountered, regular and frequent testing is the only way to ensure that performance is not being degraded. Sensor failure due to poisoning can be a costly experience. The technology in the MPS™ sensor is not affected by contaminates in the environment. Processes that have contaminates now have access to a solution that operates reliably with fail safe design to alert operator to offer a peace of mind for personnel and assets located in hazardous environment. Additionally, the MPS sensor is not harmed by elevated flammable gas concentrations, which may cause cracking in conventional catalytic sensor types for example. The MPS sensor carries on working. 

Hydrogen (H2)

The usage of Hydrogen in industrial processes is increasing as the focus to find a cleaner alternative to natural gas usage. Detection of Hydrogen is currently restricted to pellistor, metal oxide semiconductor, electrochemical and less accurate thermal conductivity sensor technology due to Infra-Red sensors inability to detect Hydrogen. When faced with challenges highlighted above in poisoning or false alarms, the current solution can leave operator with frequent bump testing and servicing in addition to false alarm challenges. The MPS™ sensor provides a far better solution for Hydrogen detection, removing the challenges faced with traditional sensor technology. A long-life, relatively fast responding hydrogen sensor that does not require calibration throughout the life cycle of the sensor, without the risk of poisoning or false alarms, can significantly save on total cost of ownership and reduces interaction with unit resulting in peace of mind and reduced risk for operators leveraging MPS™ technology. All of this is possible thanks to MPS™ technology, which is the biggest breakthrough in gas detection for several decades. The Gasman with MPS is hydrogen (H2) ready. A single MPS sensor accurately detects hydrogen and common hydrocarbons in a fail-safe, poison-resistant solution without recalibration.

For more on Crowcon, visit https://www.crowcon.com or for more on MPSTM visit https://www.crowcon.com/mpsinfixed/  

World Hydrogen Summit 2022

Crowcon exhibited at the World Hydrogen Summit & Exhibition 2022 on the 9th – 11th May 2022 as part of the event designed to advance development in the hydrogen sector. Based in Rotterdam and produced by the Sustainable Energy Council (SEC), this year’s exhibition was the first Crowcon has attended. We were excited to be part of an occasion which fosters connections and collaboration between those at the forefront of the heavy industry and drives the hydrogen sector forward.

Our team representatives met various industry peers and showcased our Hydrogen solutions for gas detection. Our MPS sensor offers a higher standard of flammable gas detection thanks to its pioneering advanced molecular property spectrometer (MPS™) technology that can detect and accurately identify over 15 different flammable gases. This showcased an ideal solution for hydrogen detection due to hydrogen having proprieties that allow for easy ignition and higher burn intensity compared to that of petrol or diesel, therefore poses a real explosion risk. To find out more read our blog.

Our MPS technology had interest due to this not requiring calibration throughout the life cycle of the sensor, and detects flammable gases without the risk of poisoning or false alarms, thereby having a significant saving on total cost of ownership and reduce interaction with units, ultimately providing peace of mind and less risk for operators.

The Summit allowed us to understand the current state of the hydrogen market, including key players and current projects, allowing for potential developed a greater understanding of our product needs in order to play a major role in the future of hydrogen gas detection.

We look forward to attending next year!

Gold Mining: What gas detection do I need? 

How is gold mined?

Gold is a rare substance equating to 3 parts per billion of the earth’s outer layer, with most of the world’s available gold coming from Australia. Gold, like iron, copper and lead, is a metal. There are two primary forms of gold mining, including open-cut and underground mining. Open mining involves earth-moving equipment to remove waste rock from the ore body above, and then mining is conducted from the remaining substance. This process requires waste and ore to be struck at high volumes to break the waste and ore into sizes suitable for handling and transportation to both waste dumps and ore crushers. The other form of gold mining is the more traditional underground mining method. This is where vertical shafts and spiral tunnels transport workers and equipment into and out of the mine, providing ventilation and hauling the waste rock and ore to the surface.

Gas detection in mining

When relating to gas detection, the process of health and safety within mines has developed considerably over the past century, from morphing from the crude usage of methane wick wall testing, singing canaries and flame safety to modern-day gas detection technologies and processes as we know them. Ensuring the correct type of detection equipment is utilised, whether fixed or portable, before entering these spaces. Proper equipment utilisation will ensure gas levels are accurately monitored, and workers are alerted to dangerous concentrations within the atmosphere at the earliest opportunity.

What are the gas hazards and what are the dangers?

The dangers those working within the mining industry face several potential occupational hazards and diseases, and the possibility of fatal injury. Therefore, understanding the environments and hazards, they may be exposed to is important.

Oxygen (O2)

Oxygen (O2), usually present in the air at 20.9%, is essential to human life. There are three main reasons why oxygen poses a threat to workers within the mining industry. These include oxygen deficiencies or enrichment, as too little oxygen can prevent the human body from functioning leading to the worker losing consciousness. Unless the oxygen level can be restored to an average level, the worker is at risk of potential death. An atmosphere is deficient when the concentration of O2 is less than 19.5%. Consequently, an environment with too much oxygen is equally dangerous as this constitutes a greatly increased risk of fire and explosion. This is considered when the concentration level of O2 is over 23.5%

Carbon Monoxide (CO)

In some cases, high concentrations of Carbon Monoxide (CO) may be present. Environments that this may occur include a house fire, therefore the fire service are at risk of CO poisoning. In this environment there can be as much as 12.5% CO in the air which when the carbon monoxide rises to the ceiling with other combustion products and when the concentration hits 12.5% by volume this will only lead to one thing, called a flashover. This is when the whole lot ignites as a fuel. Apart from items falling on the fire service, this is one of the most extreme dangers they face when working inside a burning building. Due to the characteristics of CO being so hard to identify, I.e., colourless, odourless, tasteless, poisonous gas, it may take time for you to realise that you have CO poisoning. The effects of CO can be dangerous, this is because CO prevents the blood system from effectively carrying oxygen around the body, specifically to vital organs such as the heart and brain. High doses of CO, therefore, can cause death from asphyxiation or lack of oxygen to the brain. According to statistics from the Department of Health, the most common indication of CO poisoning is that of a headache with 90% of patients reporting this as a symptom, with 50% reporting nausea and vomiting, as well as vertigo. With confusion/changes in consciousness, and weakness accounting for 30% and 20% of reports.

Hydrogen sulphide (H2S)

Hydrogen sulphide (H2S) is a colourless, flammable gas with a characteristic odour of rotten eggs. Skin and eye contact may occur. However, the nervous system and cardiovascular system are most affected by hydrogen sulphide, which can lead to a range of symptoms. Single exposures to high concentrations may rapidly cause breathing difficulties and death.

Sulphur dioxide (SO2)

Sulphur dioxide (SO2) can cause several harmful effects on the respiratory systems, in particular the lung. It can also cause skin irritation. Skin contact with (SO2) causes stinging pain, redness of the skin and blisters. Skin contact with compressed gas or liquid can cause frostbite. Eye contact causes watering eyes and, in severe cases, blindness can occur.

Methane (CH4)

Methane (CH4) is a colourless, highly flammable gas with a primary component being that of natural gas. High levels of (CH4) can reduce the amount of oxygen breathed from the air, which can result in mood changes, slurred speech, vision problems, memory loss, nausea, vomiting, facial flushing and headache. In severe cases, there may be changes in breathing and heart rate, balance problems, numbness, and unconsciousness. Although, if exposure is for a longer period, it can result in fatality.

Hydrogen (H2)

Hydrogen Gas is a colourless, odourless, and tasteless gas which is lighter than air. As it is lighter than air this means it float higher than our atmosphere, meaning it is not naturally found, but instead must be created. Hydrogen poses a fire or explosion risk as well as an inhalation risk. High concentrations of this gas can cause an oxygen-deficient environment. Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting and depression of all the senses

Ammonia (NH3)

Ammonia (NH3) is one of the most widely used chemicals globally that is produced both in the human body and in nature. Although it is naturally created (NH3) is corrosive which poses a serve concern for health. High exposure within the air can result in immediate burning to the eyes, nose, throat and respiratory tract. Serve cases can result in blindness.

Other gas risks

Whilst Hydrogen Cyanide (HCN) doesn’t persist within the environment, improper storage, handling and waste management can pose severe risk to human health as well as effects on the environment. Cyanide interferes with human respiration at cellular levels that can cause serve and acute effects, including rapid breathing, tremors, asphyxiation.

Diesel particulate exposure can occur in underground mines as a result of diesel-powered mobile equipment used for drilling and haulage. Although control measures include the use of low sulphur diesel fuel, engine maintenance and ventilation, health implication includes excess risk of lung cancer.

Products that can help to protect yourself

Crowcon provide a range of gas detection including both portable and fixed products all of which are suitable for gas detection within the mining industry.

To find out more visit our industry page here.

Hydrogen Electrolysis

At present the most commercially developed technology available to produce hydrogen is from electrolysis. Electrolysis is an optimistic course of action for carbon-free hydrogen production from renewable and nuclear resources. Water electrolysis is the decomposition of water (H2O) into its basic components, hydrogen (H2) and oxygen (O2), through passing electric current. Water is a complete source for producing hydrogen and the only by-product released during process is oxygen. This process uses electrical energy that can then be stored as a chemical energy in the form of hydrogen.

What is the Process?

To produce Hydrogen, Electrolysis converts electrical energy into chemical energy by storing electrons in stable chemical bonds. Like fuel cells, electrolysers are composed of an anode and a cathode separated by an aqueous electrolyte according to the type of electrolyte material involved and the ionic species it conducts. The electrolyte is an obligatory part as pure water does not have the ability to carry enough charge as it lacks ions. At the anode, water is oxidised into oxygen gas and hydrogen ions. While the cathode, water is reduced to hydrogen gas and hydroxide ions. At present there are three leading electrolysis technologies.

Alkaline Electrolysers (AEL)

This technology has been used on an industrial scale for over 100 years. Alkaline electrolysers operate via transport of hydroxide ions (OH-) through the electrolyte from the cathode to the anode with hydrogen being generated on the cathode side. Operating at 100°–150°C, Electrolysers use a liquid alkaline solution of sodium or potassium hydroxide (KOH) as the electrolyte. In this process the anode and cathode are separated using a diaphragm that prevents remixing. At the cathode, water is split to form H2 and releases hydroxide anions that pass through the diaphragm to recombine at the anode where oxygen is produced. As this is a well-established technology it is relatively low in cost of production as well as it provides a long-time stability. However, it does have a crossover in gases possibly compromising its degree of purity and requires the use of a corrosive liquid electrolyte.

Polymer Electrolyte Membrane Electrolysers (PEM)

Polymer Electrolyte Membrane is the latest technology to be commercially used to produce hydrogen. In a PEM electrolyser, the electrolyte is a solid specialty plastic material. PEM electrolysers operate at 70°–90°C. In this the process the water reacts at the anode to form oxygen and positively charged hydrogen ions (protons). The electrons flow through an external circuit and the hydrogen ions selectively move across the PEM to the cathode. At the cathode, the hydrogen ions combine with electrons from the external circuit to form hydrogen gas. Compared to AEL there are several advantages: the product gas purity is high in a partial load operation, the system design is compact and has a rapid system response. However, component cost is high and durability is low.

Solid Oxide Electrolysers (SOE)

AEL and PEM electrolysers are known as Low-Temperature Electrolysers (LTE). However, Solid oxide Electrolyser (SOE) is known as High-Temperature Electrolyser (HTE). This technology is still at development stage. In SOE, solid ceramic material is used as the electrolyte which conducts negatively charged oxygen ions (O2-) at elevated temperatures, generates hydrogen in a slightly different way. At a temperature about 700°–800°C steam at the cathode combines with electrons from the external circuit to form hydrogen gas and negatively charged oxygen ions. The oxygen ions pass through the solid ceramic membrane and react at the anode to form oxygen gas and generate electrons for the external circuit. Advantages of this technology is that it combines high heat and power efficiency as well as it producing low emissions at a relatively low cost. Although, due to the high heat and power required, start-up time takes longer.

Why is Hydrogen being considered as an alternative fuel?

Hydrogen is considered an alternative fuel under the Energy Policy Act of 1992. Hydrogen produced via electrolysis can contribute zero greenhouse gas emissions, depending on the source of the electricity used. This technology is being pursued to work with renewable (wind, solar, hydro, geothermal) and nuclear energy options to allow virtually zero greenhouse gas and other pollutant emissions. Although, this type of production will require the cost to be decreased significantly to be competitive with more mature carbon-based pathways such as natural gas reforming. There is potential for synergy with renewable energy power generation. Hydrogen fuel and electric power generation could be distributed and sited at wind farms, thereby allowing flexibility to shift production to best match resource availability with system operational needs and market factors.

Blue Hydrogen – An overview

What is Hydrogen?

Hydrogen is one of the most abundant sources of gas contributing approximately 75% of the gas in our solar system. Hydrogen is found in various things including light, water, air, plants, and animals; however, it is often combined with other elements. The most familiar combination is with oxygen to make water. Hydrogen gas is a colourless, odourless, and tasteless gas which is lighter than air. As it is far lighter than air this means it rises in our atmosphere, meaning it is not naturally found at ground level, but instead must be created. This is done by separating it from other elements and collecting the gas. 

What is Blue Hydrogen?

Blue hydrogen has been described as ‘low-carbon hydrogen’ due to the Steam Reforming Process (SMR) not requiring the release of greenhouse gases. Blue hydrogen is produced from non-renewable energy sources when natural gas is divided into hydrogen and Carbon Dioxide through either Steam Methane Reforming (SMR) or Auto Thermal Reforming (ATR), the CO2 is then captured and stored. This process captures greenhouse gasses, thereby mitigating any impacts on the environment. SMR is the most common method for producing bulk hydrogen and contributes most of the world’s production. This method uses a reformer, which reacts steam at an elevated temperature and pressure with methane as well as a nickel catalyst resulting in production of hydrogen and carbon monoxide. The carbon monoxide is then combined with more steam resulting in more hydrogen and carbon dioxide. The process of ‘capturing’ is completed through Carbon Capture Usage and Storage (CCUS). Alternatively, autothermal reforming uses oxygen and carbon dioxide or steam to react with methane to form hydrogen. The downside of these two methods is that they produce carbon dioxide as a by-product, so carbon capture and storage (CCS) is essential to trap and store this carbon. 

The Scale of Hydrogen Production

The natural gas reforming technology that is available today lends itself to the industrial manufacture of hydrogen on a large scale. A world-class methane reformer can produce 200 million standard cubic feet (MSCF) of hydrogen per day. That is the equivalent amount of hydrogen to support an industrial area or refuel 10,000 lorries. Approximately 150 of these would be needed to completely replace the UK natural gas supply, and we use 2.1% of the world’s natural gas. 

Industrial scale production of Blue Hydrogen is already possible today, however, improvements in production and efficiency would lead to a further reduction in costs. In most countries who produce hydrogen, Blue Hydrogen is currently being produced at a lower cost than green, which is still in the earlier stages of its development. With the additionally arrangements of CO2 policy and hydrogen incentives, the demand for hydrogen will continue to rise and with this it will gain in traction, although this would currently require both production technologies for hydrogen to be fully used. 

Advantages of Blue Hydrogen?

By producing Blue Hydrogen without the need to generate electricity needed for the production of green hydrogen, Blue Hydrogen could help to conserve scarce land as well as accelerate the shift towards low-carbon energy without hinderance related to land requirements. 

Currently Blue hydrogen is less expensive compared to Green Hydrogen. With mainstream estimates of Blue Hydrogen production costing around $1.50 per kg or less when using lower-cost natural gas. Comparatively, Green Hydrogen is costs more than two times that amount today, with reductions requiring significant improvements in electrolysis and very low-cost electricity. 

Disadvantages of Blue Hydrogen?

Natural gas prices are on the increase. US researchers when looking into environmental impact over its entire lifecycle of Blue Hydrogen have found that methane emissions produced when the fossil natural gas is extracted and burned are much less than Blue Hydrogen due to manufacturing efficiencies. With more methane needing to be extracted in order to make Blue Hydrogen. As well as it requiring to pass through reformers, pipelines, and ships, of which poses more opportunities for leaks. This research indicates, making Blue Hydrogen is currently 20% worse for the climate than just using fossil gas. 

The process of making Blue Hydrogen also requires a lot of energy. For every unit of heat in the natural gas at the start of the process, only 70-75% of that potential heat remains in the hydrogen product. In other words, if the hydrogen is used to heat a building, 25% more natural gas is required to produce Blue Hydrogen than if it was used directly for heat. 

Is hydrogen the future?

The potential of this initiative could increase the use of hydrogen, which may help decarbonise the area’s industrial sector. Hydrogen would be delivered to customers to help reduce emissions from domestic heating, industrial processes and transportation, and CO2 would be captured and shipped to a secure offshore storage location. This could also attract significant investment in the community, support existing employment, and stimulate the creation of local jobs. In the end, if the Blue Hydrogen industry is to contribute a meaningful role in decarbonisation, it will need to build and operate infrastructure that delivers on its full emission reduction potential. 

Green Hydrogen – An Overview

What is Hydrogen?

Hydrogen is one of the most abundant sources of gas contributing approximately 75% of the gas in our solar system. Hydrogen is found in various things including light, water, air, plants, and animals, however, it is often combined with other elements. The most familiar combination is with oxygen to make water. Hydrogen gas is a colourless, odourless, and tasteless gas which is lighter than air. As it is far lighter than air this means it rises in our atmosphere, meaning it is not naturally found at ground level, but instead must be created. This is done by separating it from other elements and collecting the gas. 

What is Green Hydrogen?

Green hydrogen is produced using electricity to power an electrolyser that separates hydrogen from the water molecule producing oxygen as a by-product. Excess electricity can be used by electrolysis to create hydrogen gas that can be stored for the future. Essentially, if the electricity used to power the electrolysers originates from renewable sources such as wind, solar or hydro, or if it originates from nuclear power – fission or fusion, then the hydrogen produced is green, in which the only carbon emissions are from those embodied in the generation infrastructure. Electrolysers are the most significant technology used for synthesising zero-carbon hydrogen fuel using renewable energy, known as green hydrogen. Green hydrogen and derivatives are an essential solution to the decarbonisation of heavy industry sectors and experts suggest will constitute up to 25% of total final energy use in a net-zero economy. 

Advantages of Green Hydrogen

It is 100% sustainable as it does not emit polluting gases either through combustion or production. Hydrogen can be easily stored thereby allowing it to be used later for other purposes and/or at the time of production. Green hydrogen can be converted into electricity or synthetic gas and can be used for a variety of domestic, commercial, industrial or mobility purposes. Additionally, hydrogen can be mixed with natural gas at ratio of up to 20% without modification of the gas main infrastructure or gas appliances.  

Disadvantages of Green Hydrogen

Although hydrogen is 100% sustainable it currently comes at a high cost than fossil fuels due to renewable energy being more expensive to produce. The overall production of hydrogen requires more energy than some other fuels, so unless the electricity required to produce hydrogen comes from a renewable source the entire process of production may be counterproductive. Additionally, hydrogen is a highly flammable gas, therefore extensive safety measures are essential to prevent leakage and explosions. 

What is The Green Hydrogen Catapult (GHC) and what does it aim to achieve? 

Members of the Green Hydrogen Catapult (GHC) are a coalition of leaders with an ambition to expand and grow Green Hydrogen Development. As of November 2021, they have announced a commitment for 45 GW of electrolysers to be developed with secured financing by 2026 with additional targeted commissioning for 2027. This is a vastly increased ambition as the initial target set by the coalition at the time of its launch in December 2020 was 25 GW. Green hydrogen has been seen as a critical element in creating a sustainable energy future as well as being one of the largest business opportunities in recent times. And has been said to be the key to allowing for the decarbonisation of sectors like steel manufacturing, shipping, and aviation.  

Why Hydrogen is seen as a cleaner future?

We live in a world in which one of the collective sustainability aims is to decarbonise the fuel we use by 2050. To achieve this, decarbonising the production of a significant fuel source like hydrogen, giving rise to green hydrogen, is one of the key strategies as production of non-green hydrogen is currently responsible for more than 2 % of total global CO2 emissions. During combustion, chemical bonds are broken and constituent elements combined with oxygen. Traditionally, Methane gas has been the natural gas of choice with 85% of homes and 40% of the UK’s electricity depending on natural gas. Methane is a cleaner fuel than coal, however, when it is burnt carbon dioxide is produced as a waste product which, on entering the atmosphere, starts contributing to climate change. Hydrogen Gas when burnt only produces water vapour as a waste product, which has no global warming potential. 

The UK Government have seen the use of hydrogen as a fuel and hence hydrogen homes as a way forward for a greener way of living, and have set a target for a thriving hydrogen economy by 2030. Whilst Japan, South Korea and China are on course to make considerable progress in hydrogen economy development with targets set to surpass the UK by 2030. Similarly, the European Commission has presented a hydrogen strategy in which hydrogen could support 24% of Europe’s energy by 2050. 

What do you need to know about Hydrogen?

Hydrogen is one of the most abundant sources of gas contributing approximately 75% of the gas on our Earth. Hydrogen is found in various things including light, water, air, plants, and animals, however, is often combined with other chemicals, the most familiar combination is with oxygen to make water.

What is Hydrogen and what are its benefits?

Historically, Hydrogen Gas has been used as a component for rocket fuel as well as in gas turbines to produce electricity or to burn to run combustion engines for the power generation. In the Oil and Gas Industry, excess hydrogen from the catalytic reforming of naphtha has been used as fuel for other unit operations.

Hydrogen Gas is a colourless, odourless, and tasteless gas which is lighter than air. As it is lighter than air this means it float higher than our atmosphere, meaning it is not naturally found, but instead must be created. This is done by separating it from other elements and collecting the vapour. Electrolysis is completed by taking liquid usually water and separating this from the chemicals found within it. In water the hydrogen and oxygen molecules separate leaving two bonds of hydrogen and one bond of oxygen. The hydrogen atoms form a gas which is captured and stored until required, the oxygen atoms are released into the air as there is no further use. The hydrogen gas that is produced leaves no damaging impact on the environment, leading to many experts believing this is the future.

Why Hydrogen is seen as a cleaner future.

In order to make energy a fuel that is a chemical is burnt. This process usually means chemical bonds are broken and combined with oxygen. Traditionally, Methane gas has been the natural gas of choice with 85% of homes and 40% of the UK’s electricity depending on gas. Methane was seen as a cleaner gas compared to coal, however, when its burnt carbon dioxide is produced as a waste product thereby contributing to climate change. Hydrogen Gas when burnt only produces water vapour as a waste product, this being already a natural resource.

The difference between blue hydrogen and green hydrogen.

Blue hydrogen is produced from non-renewable energy sources, through two methods either Steam or Autothermal. Steam Methane reformation is the most common when producing hydrogen in bulk. This method uses a reformer which produces steam at a high temperature and pressure and is combined with methane and a nickel catalyst to produce hydrogen and carbon monoxide. Autothermal reforming uses the same process however, with oxygen and carbon dioxide. Both methods produce carbon as a by-product.

Green hydrogen is produced using electricity to power an electrolyser that separates hydrogen from the water molecule producing oxygen as a by-product. It also allows for excess electricity to electrolysis to create hydrogen gas that can be stored for the future.

The characteristics that hydrogen presents, has set a precedence for the future of energy. The UK Government have seen this a way forward for a greener way of living and have set a target for a thriving hydrogen economy by 2030. Whilst Japan, South Korea and China are on course to make significant progress in hydrogen development with targets set to match the UK for 2030. Similarly, the European Commission have presented a hydrogen strategy in which hydrogen could provide for 24% of the world’s energy by 2050.

Monitoring and Analysis of Landfill Gases

As recycling becomes more common, use of landfill is reducing, but it is still an important means of waste disposal. For example, 2012-13 figures from Defra (department of the environment, food and rural affairs) for England show that 8.51 million tonnes, or 33.9%, of waste collected by local authorities went to landfill.

Continue reading “Monitoring and Analysis of Landfill Gases”

Cross Calibration of Pellistor (Catalytic Flame) Sensors‡

After last week’s comparative levity, this week, I am discussing something rather more serious.

When it comes to detecting hydrocarbons, we often don’t have a cylinder of target gas available to perform a straight calibration, so we use a surrogate gas and cross calibrate. This is a problem because pellistor’s give relative responses to different  flammable gases at different levels. Hence, with a small molecule gas like methane a pellistor is more sensitive and gives a higher reading than a heavy hydrocarbon like kerosene.

Continue reading “Cross Calibration of Pellistor (Catalytic Flame) Sensors‡”