En kort historie om gasdetektion 

Udviklingen inden for gasdetektion har ændret sig betydeligt i årenes løb. Nye, innovative idéer fra kanariefugle til bærbart overvågningsudstyr giver arbejderne kontinuerlig præcis gasovervågning.

Den industrielle revolution var katalysator for udviklingen af gasdetektion på grund af brugen af meget lovende brændsler som f.eks. kul. Da kul kan udvindes af jorden enten ved minedrift eller underjordisk minedrift, var redskaber som hjelme og flammelys deres eneste beskyttelse mod farerne ved metaneksponering under jorden, som endnu ikke var blevet opdaget. Metangas er farveløs og lugtløs, hvilket gør det svært at vide, at den er til stede, indtil der blev opdaget et mærkbart mønster af sundhedsproblemer. Risikoen ved eksponering for gas resulterede i, at man eksperimenterede med detektionsmetoder for at bevare arbejdernes sikkerhed i mange år fremover.

Et behov for gasdetektion

Da eksponeringen for gas blev åbenbar, forstod minearbejderne, at de var nødt til at vide, om der var en lomme af metangas i minen, hvor de arbejdede. I begyndelsen af det 19. århundrede blev den første gasdetektor registreret, og mange minearbejdere bar flammelamper på deres hjelme for at kunne se, mens de arbejdede, så det var af afgørende betydning at kunne opdage den ekstremt brandfarlige metan. Arbejderen bar et tykt, vådt tæppe over kroppen, mens han bar en lang væge, hvis ende var tændt i brand. Når de gik ind i minerne, bevægede de flammen rundt og langs væggene for at finde gaslommer. Hvis der blev fundet en reaktion, blev den antændt og meddelt besætningen, mens den person, der opdagede den, var beskyttet af tæppet. Med tiden blev der udviklet mere avancerede metoder til gasdetektering.

Introduktion af kanariefugle

Gasdetektion blev flyttet fra mennesker til kanariefugle på grund af deres høje kvidren og lignende nervesystemer til at kontrollere vejrtrækningsmønstre. Kanariefuglene blev placeret i bestemte områder af minen, hvorfra arbejderne så efter kanariefuglene for at passe dem og se, om deres helbred var blevet påvirket. I løbet af arbejdsskiftet lyttede minearbejderne til kanariefuglenes kvidren. Hvis en kanariefugl begyndte at ryste sit bur, var det en stærk indikator på, at den var blevet udsat for en gaslomme, der var begyndt at påvirke dens helbred. Minearbejderne ville så evakuere minen og bemærkede, at det var usikkert at komme ind i den. I nogle tilfælde, hvor kanariefuglen holdt op med at kvidre, vidste minearbejderne, at de skulle skynde sig ud af minen, før gaseksponeringen havde haft en chance for at påvirke deres helbred.

Flammen lys

Flammelyset var den næste udvikling inden for gasdetektering i minen som følge af bekymringer om dyrenes sikkerhed. Flammen gav lys til minearbejderne, men var samtidig anbragt i en flammeskærm, der absorberede al varme og fangede flammen for at forhindre, at den antændte eventuel tilstedeværende metan. Den udvendige skal indeholdt et glas med tre vandrette snit. Den midterste linje var indstillet som det ideelle gasmiljø, mens den nederste linje angav et iltfattigt miljø, og den øverste linje angav methaneksponering eller et iltberiget miljø. Minearbejderne ville tænde flammen i et miljø med frisk luft. Hvis flammen blev svagere eller begyndte at dø, var det et tegn på, at atmosfæren havde en lav iltkoncentration. Hvis flammen blev større, vidste minearbejderne, at der var metan til stede sammen med ilt, hvilket i begge tilfælde indikerede, at de skulle forlade minen.

Den katalytiske sensor

Selv om flammelyset var en udvikling inden for gasdetektionsteknologi, var det dog ikke en "one size fits all"-tilgang til alle industrier. Derfor var den katalytiske sensor den første gasdetektor, der har lighed med moderne teknologi. Sensorerne fungerer efter det princip, at når en gas oxideres, producerer den varme. Den katalytiske sensor fungerer ved hjælp af temperaturændringer, som er proportionale med gaskoncentrationen. Selv om dette var et skridt fremad i udviklingen af den teknologi, der var nødvendig for gasdetektion, krævede det i begyndelsen stadig manuel betjening for at få en aflæsning.

Moderne teknologi

Gasdetektionsteknologien er blevet udviklet enormt siden begyndelsen af det 19. århundrede, hvor den første gasdetektor blev registreret. Der findes nu mere end fem forskellige typer sensorer, der almindeligvis anvendes i alle industrier, herunder Elektrokemisk, Katalytiske perler (Pellistor), Fotoioniseringsdetektor (PID) og infrarød teknologi (IR), sammen med de mest moderne sensorer Molekylær egenskabsspektrometer™ (MPS) og Long-Life Oxygen (LLO2) er moderne gasdetektorer meget følsomme, nøjagtige og vigtigst af alt pålidelige, hvilket alt sammen gør det muligt for alt personale at forblive sikkert og reducere antallet af dødsulykker på arbejdspladsen.

Hvad er en pellistor (katalytiske perler)? 

Pellistorsensorer består af to matchende trådspoler, der hver er indlejret i en keramisk perle. Der ledes strøm gennem spolerne, hvorved perlerne opvarmes til ca. 230˚C. Perlen bliver varm af forbrændingen, hvilket resulterer i en temperaturforskel mellem denne aktive perle og den anden "referenceperle". Dette forårsager en forskel i modstanden, som måles; mængden af tilstedeværende gas er direkte proportional med modstandsændringen, så gaskoncentrationen som en procentdel af dens nedre eksplosionsgrænse (% LEL*) kan bestemmes nøjagtigt. Den brændbare gas brænder på perlen, og den ekstra varme, der opstår, medfører en stigning i spolens modstand, som måles af instrumentet for at angive gaskoncentrationen. Pellistorsensorer anvendes i vid udstrækning i hele industrien, bl.a. på boreplatforme, på raffinaderier og til underjordiske konstruktionsformål som f.eks. miner og tunneler.

Fordele ved pellistorsensorer?

Pellistorsensorer er relativt billige på grund af forskellene i teknologiniveauet i forhold til de mere komplekse teknologier som f.eks. IR-sensorer, men det kan dog være nødvendigt at udskifte dem oftere. Med et lineært output svarende til gaskoncentrationen kan der anvendes korrektionsfaktorer til at beregne pellistorers omtrentlige respons på andre brændbare gasser, hvilket kan gøre pellistorer til et godt valg, når der er flere brændbare gasser og dampe til stede.

Faktorer, der påvirker Pellistor-sensor Levetid

De to vigtigste faktorer, der forkorter sensorens levetid, er eksponering for høj gaskoncentration og forgiftning eller hæmning af sensoren. Ekstreme mekaniske stød eller vibrationer kan også påvirke sensorens levetid.

Katalysatoroverfladens evne til at oxidere gassen mindskes, når den er blevet forgiftet eller hæmmet. Der er kendskab til sensorers levetid på op til ti år i visse anvendelser, hvor der ikke er inhiberende eller forgiftende forbindelser til stede. Pellistorer med højere effekt har større perler og dermed mere katalysator, og denne større katalytiske aktivitet gør dem mindre sårbare over for forgiftning. Mere porøse perler gør det lettere for gassen at få adgang til mere katalysator, hvilket giver større katalytisk aktivitet fra et overfladevolumen i stedet for blot et overfladeareal. En dygtig oprindelig konstruktion og sofistikerede fremstillingsprocesser sikrer maksimal porøsitet af perlerne.

Perlens styrke er også af stor betydning, da eksponering for høje gaskoncentrationer (>100 % LEL) kan skade sensorens integritet og forårsage revner. Ydelsen påvirkes, og der opstår ofte forskydninger i nul-/basislinjesignalet. Ufuldstændig forbrænding resulterer i kulstofaflejringer på perlen: kulstoffet "vokser" i porerne og forårsager mekanisk skade eller står bare i vejen for, at gassen kan nå frem til pellistoren. Kulstoffet kan dog med tiden brændes af, så de katalytiske steder igen kommer frem.

Ekstreme mekaniske stød eller vibrationer kan i sjældne tilfælde forårsage brud på pellistorspolerne. Dette problem er mere udbredt på bærbare gasdetektorer end på gasdetektorer med fastmonteret udstyr, da der er større sandsynlighed for, at de tabes, og da de anvendte pellistorer har lavere effekt (for at maksimere batterilevetiden) og derfor anvender mere sarte, tyndere trådspoler.

Hvad sker der, når en Pellistor bliver forgiftet?

En forgiftet pellistor forbliver elektrisk funktionsdygtig, men reagerer muligvis ikke på gas, da den ikke producerer et output, når den udsættes for brændbar gas. Det betyder, at en detektor ikke går i alarm og giver indtryk af, at omgivelserne er sikre.

Forbindelser, der indeholder silicium, bly, svovl og fosfater i blot nogle få ppm (parts per million), kan forringe pellistorernes ydeevne. Uanset om der er tale om noget i dit generelle arbejdsmiljø eller noget så harmløst som rengøringsudstyr eller håndcreme, kan det derfor betyde, at du bringer det i nærheden af en pellistor og dermed kompromitterer sensorens effektivitet, uden at du overhovedet er klar over det.

Hvorfor er silikoner dårlige?

Silikoner har deres fortrin, men de er måske mere almindelige, end du først troede. Nogle eksempler er tætningsmidler, klæbemidler, smøremidler og termisk og elektrisk isolering. Silikoner har evnen til at forgifte en sensor på en pellistor ved ekstremt lave niveauer, fordi de virker kumulativt lidt ad gangen.

Produkter

Vores bærbare produkter bruger alle bærbare pellistorperler med lav effekt. Dette forlænger batteriets levetid, men kan gøre dem tilbøjelige til at blive forgiftet. Derfor tilbyder vi alternativer, som ikke forgifter, f.eks. IR- og MPS-sensorerne. Vores faste produkter anvender en porøs fast pellistor med høj energi.

Hvis du vil vide mere, besøg vores tekniske side for at få flere oplysninger.

Hvor længe vil min gassensor holde?

Gasdetektorer anvendes i vid udstrækning inden for mange industrier (f.eks. vandbehandling, raffinaderier, petrokemiske virksomheder, stålindustrien og byggebranchen for blot at nævne nogle få) for at beskytte personale og udstyr mod farlige gasser og deres virkninger. Brugere af bærbare og faste enheder er bekendt med de potentielt betydelige omkostninger, der kan være forbundet med at holde deres instrumenter sikkert i drift i hele deres levetid. Gassensorer måler koncentrationen af en bestemt analysand af interesse, f.eks. CO (carbonmonoxid), CO2 (kuldioxid) eller NOx (nitrogenoxid). Der findes to mest anvendte gassensorer inden for industrielle applikationer: elektrokemiske sensorer til måling af giftige gasser og ilt og pellistorer (eller katalytiske perler) til måling af brændbare gasser. I de seneste år er der indført både ilt og MPS (Molecular Property Spectrometer) sensorer har givet mulighed for at forbedre sikkerheden.

Hvordan ved jeg, om min sensor er defekt?

Der har været flere patenter og teknikker anvendt på gasdetektorer i løbet af de seneste årtier, som hævder at kunne bestemme, hvornår en elektrokemisk sensor har svigtet. De fleste af disse metoder konkluderer imidlertid kun, at sensoren fungerer ved hjælp af en form for elektrodestimulering, og de kan give en falsk følelse af sikkerhed. Den eneste sikre metode til at påvise, at en sensor fungerer, er at anvende testgas og måle responsen: en bump-test eller fuld kalibrering.

Elektrokemisk sensor

Elektrokemiske sensorer er de mest anvendte i diffusionstilstand, hvor gas i det omgivende miljø trænger ind gennem et hul i cellens overflade. Nogle instrumenter anvender en pumpe til at tilføre luft eller gasprøver til sensoren. Der er monteret en PTFE-membran over hullet for at forhindre vand eller olie i at trænge ind i cellen. Sensorens rækkevidde og følsomhed kan varieres i udformningen ved at anvende forskellige størrelser huller. Større huller giver højere følsomhed og opløsning, mens mindre huller reducerer følsomheden og opløsningen, men øger rækkevidden.

Faktorer, der påvirker den elektrokemiske sensors levetid

Der er tre hovedfaktorer, der påvirker sensorens levetid, herunder temperatur, eksponering for ekstremt høje gaskoncentrationer og fugtighed. Andre faktorer omfatter sensorelektroder og ekstreme vibrationer og mekaniske stød.

Ekstreme temperaturer kan påvirke sensorens levetid. Producenten angiver et driftstemperaturområde for instrumentet: typisk -30˚C til +50˚C. Sensorer af høj kvalitet vil dog kunne modstå midlertidige udsving ud over disse grænser. Kortvarig (1-2 timer) eksponering ved 60-65˚C for H2S- eller CO-sensorer (f.eks.) er acceptabel, men gentagne hændelser vil resultere i fordampning af elektrolytten og forskydninger i basislinjen (nul) og langsommere respons.

Eksponering for ekstremt høje gaskoncentrationer kan også forringe sensorens ydeevne. Elektrokemiske sensorer testes typisk ved at blive udsat for op til ti gange deres konstruktionsgrænse. Sensorer, der er fremstillet af katalysatormateriale af høj kvalitet, bør kunne modstå sådanne eksponeringer uden ændringer i kemien eller tab af ydeevne på lang sigt. Sensorer med lavere katalysatorbelastning kan lide skade.

Den største indflydelse på sensorens levetid er luftfugtighed. Den ideelle miljøbetingelse for elektrokemiske sensorer er 20˚Celsius og 60 % RH (relativ luftfugtighed). Når den omgivende luftfugtighed stiger til over 60 % RH, vil vand blive absorberet i elektrolytten og forårsage fortynding. I ekstreme tilfælde kan væskeindholdet stige 2-3 gange, hvilket potentielt kan resultere i lækage fra sensorhuset og derefter gennem stifterne. Under 60 % RH begynder vandet i elektrolytten at blive afhydreret. Responstiden kan blive betydeligt forlænget, når elektrolytten dehydreres. Sensorelektroder kan under usædvanlige forhold blive forgiftet af forstyrrende gasser, der adsorberes på katalysatoren eller reagerer med den og skaber biprodukter, som hæmmer katalysatoren.

Ekstreme vibrationer og mekaniske stød kan også skade sensorer ved at bryde de svejsninger, der binder platinelektroderne, forbindelsesstrimlerne (eller ledningerne i nogle sensorer) og stifterne sammen.

"Normal" levetid for elektrokemiske sensorer

Elektrokemiske sensorer til almindelige gasser som f.eks. kulilte eller svovlbrinte har en levetid, der typisk er angivet til 2-3 år. Mere eksotiske gassensorer som f.eks. hydrogenfluorid kan have en levetid på kun 12-18 måneder. Under ideelle forhold (stabil temperatur og luftfugtighed på omkring 20˚C og 60 % RH) uden forekomst af forurenende stoffer er det kendt, at elektrokemiske sensorer kan fungere i mere end 4000 dage (11 år). Periodisk eksponering for målgassen begrænser ikke levetiden for disse små brændselsceller: sensorer af høj kvalitet har en stor mængde katalysatormateriale og robuste ledere, som ikke udtømmes af reaktionen.

Pellistor-sensor

Pellistorsensorer består af to matchende trådspoler, der hver er indlejret i en keramisk perle. Der ledes strøm gennem spolerne, hvorved perlerne opvarmes til ca. 500˚C. Den brændbare gas brænder på perlen, og den ekstra varme, der genereres, medfører en stigning i spolernes modstand, som måles af instrumentet for at angive gaskoncentrationen.

Faktorer, der påvirker pellistorsensorens levetid

De to vigtigste faktorer, der påvirker sensorens levetid, er eksponering for høj gaskoncentration og poising eller hæmning af sensoren. Ekstreme mekaniske stød eller vibrationer kan også påvirke sensorens levetid. Katalysatoroverfladens evne til at oxidere gassen mindskes, når den er blevet forgiftet eller hæmmet. Sensorens levetid på mere end ti år er almindelig i applikationer, hvor der ikke er inhiberende eller forgiftende forbindelser til stede. Pellistorer med højere effekt har større katalytisk aktivitet og er mindre sårbare over for forgiftning. Mere porøse perler har også større katalytisk aktivitet, da deres overfladevolumen øges. En dygtig oprindelig konstruktion og sofistikerede fremstillingsprocesser sikrer maksimal porøsitet af perlerne. Eksponering for høje gaskoncentrationer (> 100 % LEL) kan også skade sensorens ydeevne og skabe en forskydning i nul-/baseline-signalet. Ufuldstændig forbrænding resulterer i kulstofaflejringer på perlen: kulstoffet "vokser" i porerne og forårsager mekanisk skade. Kulstoffet kan dog med tiden brændes af og frigøre katalytiske steder igen. Ekstreme mekaniske stød eller vibrationer kan i sjældne tilfælde også forårsage brud på pellistorspolerne. Dette problem er mere udbredt på bærbare gasdetektorer end på gasdetektorer med fastmonteret udstyr, da der er større sandsynlighed for, at de tabes, og da de anvendte pellistorer har en lavere effekt (for at maksimere batterilevetiden) og derfor anvender mere sarte, tyndere trådspoler.

Hvordan ved jeg, om min sensor er defekt?

En pellistor, der er blevet forgiftet, forbliver elektrisk funktionsdygtig, men reagerer muligvis ikke på gas. Gasdetektoren og styresystemet kan derfor se ud til at være i en sund tilstand, men en lækage af brændbar gas kan ikke opdages.

Iltføler

Ikonet Lang levetid 02

Vores nye blyfri, langtidsholdbare iltsensor har ikke komprimerede blystrenge, som elektrolytten skal trænge igennem, hvilket gør det muligt at bruge en tyk elektrolyt, hvilket betyder ingen lækager, ingen korrosion forårsaget af lækager og forbedret sikkerhed. Den ekstra robusthed af denne sensor gør det muligt for os at tilbyde en 5-årig garanti for ekstra tryghed.

Lang levetid - iltsensorer har en lang levetid på 5 år med mindre nedetid, lavere ejeromkostninger og mindre miljøpåvirkning. De måler nøjagtigt ilt over et bredt spektrum af koncentrationer fra 0 til 30 % volumen og er den næste generation af O2-gasdetektion.

MPS-sensor

MPS sensor giver avanceret teknologi, der fjerner behovet for at kalibrere og giver en "ægte LEL-værdi (lavere eksplosionsgrænse)" til aflæsning af femten brændbare gasser, men kan detektere alle brændbare gasser i et miljø med flere arter, hvilket resulterer i lavere løbende vedligeholdelsesomkostninger og reduceret interaktion med enheden. Dette reducerer risikoen for personalet og undgår kostbar nedetid. MPS-sensoren er også immun over for sensorforgiftning.  

Sensorsvigt på grund af forgiftning kan være en frustrerende og dyr oplevelse. Teknologien i MPS™-sensorenpåvirkes ikke af forurenende stoffer i miljøet. Processer, der har forureninger, har nu adgang til en løsning, der fungerer pålideligt med fejlsikret design til at advare operatøren og give personalet og aktiverne i farlige miljøer ro i sindet. Det er nu muligt at detektere flere brændbare gasser, selv i barske miljøer, ved hjælp af én enkelt sensor, der ikke kræver kalibrering og har en forventet levetid på mindst 5 år.

Farerne ved brint

Som brændstof er brint meget brandfarligt, og lækager udgør en alvorlig risiko for brand. Brintbrande er imidlertid markant anderledes end brande, der involverer andre brændstoffer. Når tungere brændstoffer og kulbrinter som benzin eller diesel lækker, samler de sig tæt på jorden. I modsætning hertil er brint et af de letteste grundstoffer på jorden, så når der opstår en lækage, spredes gassen hurtigt opad. Dette gør antændelse mindre sandsynlig, men en yderligere forskel er, at brint antændes og brænder lettere end benzin eller diesel. Faktisk er selv en gnist af statisk elektricitet fra en persons finger nok til at udløse en eksplosion, når der er brint til rådighed. Brintflammer er også usynlige, så det er svært at finde ud af, hvor den egentlige "ild" er, men den genererer en lav strålingsvarme på grund af fraværet af kulstof og har tendens til at brænde hurtigt ud.

Brint er lugt-, farve- og smagløst, så lækager er svære at opdage alene ved hjælp af menneskelige sanser. Brint er ikke giftigt, men i indendørs miljøer som f.eks. batterilagerrum kan det ophobes og forårsage kvælning ved at fortrænge ilten. Denne fare kan til en vis grad afhjælpes ved at tilsætte lugtstoffer til brintbrændstof, hvilket giver det en kunstig lugt og advarer brugerne i tilfælde af en lækage. Men da brint spredes hurtigt, er det usandsynligt, at lugtstoffet vil følge med det. Brint, der lækker indendørs, samler sig hurtigt, først i loftet og til sidst fylder hele rummet. Derfor er placeringen af gasdetektorer afgørende for tidlig opdagelse af en lækage.

Brint opbevares normalt og transporteres i flydende brinttanke. Den sidste bekymring er, at fordi det er komprimeret, er flydende brint ekstremt koldt. Hvis brint skal undslippe fra sin tank og komme i kontakt med huden, kan det forårsage alvorlig forfrysninger eller endda tab af ekstremiteter.

Hvilken sensorteknologi er bedst til at detektere brint?

Crowcon har et bredt udvalg af produkter til detektion af brint. De traditionelle sensorteknologier til detektion af brændbare gasser er pellistorer og infrarød (IR). Pellistorgassensorer (også kaldet katalytiske perlegassensorer) har været den primære teknologi til detektion af brændbare gasser siden 1960'erne, og du kan læse mere om pellistorsensorer på vores løsningsside. Deres største ulempe er imidlertid, at pellistorsensorer i iltfattige miljøer ikke fungerer korrekt og måske endda svigter. I nogle installationer risikerer pellistorer at blive forgiftet eller hæmmet, hvilket efterlader arbejdstagerne ubeskyttede. Desuden er pellistorsensorer ikke fejlsikre, og en sensorfejl vil ikke blive opdaget, medmindre der anvendes testgas.

Sensorer af infrarød type er en pålidelig måde at detektere brændbare kulbrinter på i iltfattige miljøer. De er ikke modtagelige for at blive forgiftet, så IR kan øge sikkerheden betydeligt under disse forhold. Læs mere om IR-sensorer på vores løsningsside og om forskellene mellem pellistorer og IR-sensorer i den følgende blog.

Ligesom pellistorer er modtagelige for forgiftning, er IR-sensorer modtagelige for alvorlige mekaniske og termiske stød og er også stærkt påvirket af bruttotryksændringer. Derudover kan IR-sensorer ikke bruges til at detektere brint. Så den bedste mulighed for brint brændbar gasdetektion er molekylær egenskabsspektrometer (MPS™) sensorteknologi. Dette kræver ikke kalibrering i hele sensorens livscyklus, og da MPS registrerer brandfarlige gasser uden risiko for forgiftning eller falske alarmer, kan det i væsentlig grad spare på de samlede ejeromkostninger og reducere interaktionen med enheder, hvilket resulterer i ro i sindet og mindre risiko for operatørerne. Molekylær ejendom spektrometer gasdetektion blev udviklet på University of Nevada og er i øjeblikket den eneste gasdetekteringsteknologi, der er i stand til at detektere flere brændbare gasser, herunder brint, samtidig, meget præcist og med en enkelt sensor.

Læs vores white paper for at finde ud af mere om vores MPS-sensorteknologi, og for mere info om detektering af brintgas kan du besøge vores brancheside og se på nogle af vores andre brintressourcer:

Hvad skal du vide om Brint?

Grøn brint - en oversigt

Blå brint - en oversigt

Xgard Bright MPS leverer brintdetektion i energilagringsapplikation

Pellistor sensorer – hvordan de fungerer

Pellistor gassensorer (eller katalytiske perlegassensorer) har været den primære teknologi til påvisning af brændbare gasser siden 60'erne. Selv om vi har drøftet en række spørgsmål vedrørende påvisning af brændbare gasser og VOC, har vi endnu ikke set på, hvordan pellistorer fungerer. For at kompensere for dette inkluderer vi en videoforklaring, som vi håber, du downloader og bruger som en del af enhver træning, du gennemfører

En pellistor er baseret på en Wheatstone bro kredsløb, og omfatter to "perler", som begge encase platin spoler.  En af perlerne (den 'aktive' perle) behandles med en katalysator, som sænker den temperatur, hvor gassen omkring den antændes. Denne perle bliver varm fra forbrændingen, hvilket resulterer i en temperaturforskel mellem denne aktive og den anden 'reference' perle.  Dette medfører en forskel i modstand, som måles; den mængde gas, der er til stede, er direkte proportional med den, så gaskoncentrationen i procent af dens nedre eksplosive grænse (%LEL*) kan bestemmes nøjagtigt.

Den varme perle og elektriske kredsløb er indeholdt i flammefast sensor hus, bag sintret metal flammefanger (eller sinter), hvorigennem gassen passerer. Begrænset i dette sensorhus, som opretholder en indre temperatur på 500 °C, kan der forekomme kontrolleret forbrænding, isoleret fra det ydre miljø. I høje gaskoncentrationer kan forbrændingsprocessen være ufuldstændig, hvilket resulterer i et lag sod på den aktive perle. Dette vil helt eller delvist forringe ydeevnen. Der skal udvises forsigtighed i miljøer, hvor der kan forekomme gasniveauer på over 70 % LEL.

For mere information om gassensorteknologi til brændbare gasser, læs vores sammenligningsartikel om pellistorer vs infrarød gassensorteknologi: Nedbryder silikoneimplantater din gasdetektion?.

* Nedre eksplosiv grænse - Lær mere

Klik i øverste højre hjørne af videoen for at få adgang til en fil, der kan downloades.

Nedværdiger silikoneimplantater din gasdetektering?

Med hensyn til gasdetektion har pellistorer været den primære teknologi til påvisning af brændbare gasser siden 60'erne.  I de fleste tilfælde, med korrekt vedligeholdelse, er pellistorer et pålideligt og omkostningseffektivt middel til overvågning af brændbare niveauer af brændbare gasser.  Der er dog omstændigheder, hvor denne teknologi måske ikke er det bedste valg, og infrarød (IR) teknologi bør overvejes i stedet.

Fortsæt læsning "Forringes din gasdetektion af silikoneimplantater?"

Krydskalibrering af Pellistor (Katalytisk flamme) Sensorer‡

Efter sidste uges komparative letsindighed i denne uge drøfter jeg noget noget mere alvorligt.

Når det kommer til at opdage kulbrinter, vi ofte ikke har en cylinder af målgas til rådighed til at udføre en lige kalibrering, så vi bruger en surrogat gas og krydskalibrere. Dette er et problem, fordi pellistor's give relative reaktioner på forskellige brændbare gasser på forskellige niveauer. Derfor, med et lille molekyle gas som metan en pellistor er mere følsomme og giver en højere læsning end en tung kulbrinte som petroleum.

Fortsæt med at læse "Cross Kalibrering af Pellistor (Katalytisk Flamme) Sensorer‡"