Wydobycie złota: Jakiego detektora gazu potrzebuję? 

Jak wydobywa się złoto?

Złoto jest rzadką substancją, występującą w zewnętrznej warstwie Ziemi w ilości 3 części na miliard, przy czym większość dostępnego na świecie złota pochodzi z Australii. Złoto, podobnie jak żelazo, miedź i ołów, jest metalem. Istnieją dwie podstawowe formy wydobycia złota: odkrywkowa i podziemna. W górnictwie odkrywkowym wykorzystuje się sprzęt do przemieszczania ziemi w celu usunięcia skały płonnej z położonego wyżej złoża, a następnie wydobywa się pozostałą substancję. Proces ten wymaga uderzania w odpady i rudę z dużą siłą, aby rozbić je do rozmiarów odpowiednich do przenoszenia i transportu zarówno na hałdy, jak i do kruszarek rudy. Inną formą wydobycia złota jest bardziej tradycyjna metoda podziemna. Polega ona na tym, że pionowe szyby i spiralne tunele transportują pracowników i sprzęt do i z kopalni, zapewniając wentylację i transport skały płonnej i rudy na powierzchnię.

Wykrywanie gazów w górnictwie

W odniesieniu do wykrywania gazów, proces bezpieczeństwo i higiena pracy w kopalniach znacznie się rozwinął w ciągu ostatniego stulecia, od prymitywnego stosowania testów metanowych, śpiewających kanarków i bezpieczeństwa płomieniowego do nowoczesnych technologii i procesów wykrywania gazów, jakie znamy. Zapewnienie stosowania właściwego typu sprzętu do wykrywania, zarówno stałe lub przenośnegoprzed wejściem do tych pomieszczeń. Właściwe wykorzystanie sprzętu zapewni dokładne monitorowanie poziomu gazu i ostrzeganie pracowników o niebezpiecznych niebezpiecznych stężeniach w atmosferze przy najbliższej okazji.

Jakie są zagrożenia związane z gazem i jakie są niebezpieczeństwa?

Zagrożenia Osoby pracujące w górnictwie są narażone na szereg potencjalnych zagrożeń zawodowych i chorób, a także na możliwość odniesienia obrażeń śmiertelnych. Dlatego ważne jest zrozumienie środowiska i zagrożeń, na jakie mogą być narażeni.

Tlen (O2)

Tlen (O2), zwykle obecny w powietrzu w stężeniu 20,9%, jest niezbędny do życia człowieka. Istnieją trzy główne powody, dla których tlen stanowi zagrożenie dla pracowników w przemyśle wydobywczym. Należą do nich niedobór lub wzbogacenie tlenuZbyt mała ilość tlenu może uniemożliwić funkcjonowanie organizmu ludzkiego, prowadząc do utraty przytomności przez pracownika. Jeżeli poziom tlenu nie zostanie przywrócony do średniego poziomu, pracownik jest narażony na ryzyko śmierci. Atmosfera jest niedostateczna, gdy stężenie O2 jest niższe niż 19,5%. W związku z tym środowisko ze zbyt dużą ilością tlenu jest równie niebezpieczne, ponieważ stanowi znacznie zwiększone ryzyko pożaru i eksplozji. O atmosferze niedoborowej mówi się, gdy stężenie O2 wynosi ponad 23,5%.

Tlenek węgla (CO)

W niektórych przypadkach może występować wysokie stężenie tlenku węgla (CO). Środowiskiem, w którym może to wystąpić, jest np. pożar domu, dlatego strażacy są narażeni na zatrucie CO. W takim środowisku w powietrzu może znajdować się nawet 12,5% CO, a kiedy tlenek węgla wraz z innymi produktami spalania wznosi się pod sufit i kiedy jego stężenie osiąga 12,5% objętości, prowadzi to tylko do jednego - wybuchu pożaru. Jest to sytuacja, w której cała masa zapala się jako paliwo. Oprócz przedmiotów spadających na strażaków jest to jedno z najbardziej ekstremalnych zagrożeń, na jakie są oni narażeni podczas pracy w płonącym budynku. Ze względu na trudną do zidentyfikowania charakterystykę CO, tj. bezbarwny, bezwonny, pozbawiony smaku, trujący gaz, może upłynąć trochę czasu, zanim zorientujesz się, że jesteś zatruty CO. Działanie CO może być niebezpieczne, ponieważ CO uniemożliwia układowi krwionośnemu skuteczne przenoszenie tlenu w organizmie, zwłaszcza do ważnych organów, takich jak serce i mózg. Wysokie dawki CO mogą więc spowodować śmierć w wyniku uduszenia lub braku tlenu w mózgu. Według statystyk Departamentu Zdrowia, najczęstszym objawem zatrucia CO jest ból głowy - 90% pacjentów zgłasza ten objaw, a 50% zgłasza nudności i wymioty oraz zawroty głowy. Dezorientacja/zmiany świadomości i osłabienie stanowią odpowiednio 30% i 20% zgłoszeń.

Siarkowodór (H2S)

Siarkowodór (H2S) jest bezbarwnym, łatwopalnym gazem o charakterystycznym zapachu zgniłych jaj. Może dojść do kontaktu ze skórą i oczami. Jednak najbardziej narażone na działanie siarkowodoru są układ nerwowy i sercowo-naczyniowy, co może prowadzić do szeregu objawów. Pojedyncze narażenie na wysokie stężenia może szybko spowodować trudności w oddychaniu i śmierć.

Dwutlenek siarki (SO2)

Dwutlenek siarki (SO2) może powodować szereg szkodliwych skutków dla układu oddechowego, w szczególności dla płuc. Może również powodować podrażnienie skóry. Kontakt skóry z (SO2) powoduje kłujący ból, zaczerwienienie skóry i pęcherze. Kontakt skóry ze sprężonym gazem lub cieczą może powodować odmrożenia. Kontakt z oczami powoduje łzawienie oczu, a w ciężkich przypadkach może dojść do ślepoty.

Metan (CH4)

Metan (CH4) jest bezbarwnym, wysoce łatwopalnym gazem, którego głównym składnikiem jest gaz ziemny. Wysokie stężenie (CH4) może zmniejszyć ilość tlenu wdychanego z powietrza, co może powodować zmiany nastroju, niewyraźną mowę, problemy z widzeniem, utratę pamięci, nudności, wymioty, zaczerwienienie twarzy i bóle głowy. W ciężkich przypadkach mogą wystąpić zmiany w oddychaniu i rytmie serca, problemy z utrzymaniem równowagi, drętwienie i utrata przytomności. Jeżeli narażenie trwa przez dłuższy czas, może doprowadzić do śmierci.

Wodór (H2)

Wodór jest bezbarwnym, bezwonnym i pozbawionym smaku gazem, który jest lżejszy od powietrza. Ponieważ jest lżejszy od powietrza, unosi się wyżej niż nasza atmosfera, co oznacza, że nie występuje naturalnie, lecz musi być wytwarzany. Wodór stanowi zagrożenie pożarowe lub wybuchowe, a także ryzyko związane z wdychaniem. Wysokie stężenie tego gazu może spowodować powstanie środowiska z niedoborem tlenu. Osoby oddychające taką atmosferą mogą odczuwać takie objawy, jak bóle głowy, dzwonienie w uszach, zawroty głowy, senność, utrata przytomności, nudności, wymioty i osłabienie wszystkich zmysłów.

Amoniak (NH3)

Amoniak (NH3) to jeden z najczęściej stosowanych na świecie związków chemicznych, który jest wytwarzany zarówno w organizmie człowieka, jak i w przyrodzie. Chociaż powstaje w sposób naturalny (NH3), jest żrący, co stanowi zagrożenie dla zdrowia. Wysoka ekspozycja w powietrzu może powodować natychmiastowe pieczenie oczu, nosa, gardła i dróg oddechowych. W ciężkich przypadkach może dojść do ślepoty.

Inne zagrożenia związane z gazem

Chociaż cyjanowodór (HCN) nie utrzymuje się w środowisku, niewłaściwe przechowywanie, obchodzenie się z nim i gospodarka odpadami mogą stanowić poważne zagrożenie dla zdrowia ludzkiego i środowiska. Cyjanek zakłóca oddychanie człowieka na poziomie komórkowym, co może powodować ostre skutki, w tym przyspieszony oddech, drżenie i uduszenie.

Narażenie na działanie pyłu zawieszonego w silnikach wysokoprężnych może występować w kopalniach podziemnych w wyniku stosowania mobilnego sprzętu napędzanego silnikami wysokoprężnymi, używanego do wiercenia i transportu. Mimo że środki kontroli obejmują stosowanie oleju napędowego o niskiej zawartości siarki, konserwację silników i wentylację, skutki zdrowotne obejmują nadmierne ryzyko zachorowania na raka płuc.

Produkty, które mogą pomóc w ochronie własnej

Crowcon oferuje szeroki zakres detektorów gazu, w tym zarówno produkty przenośne, jak i stacjonarne, z których wszystkie nadają się do wykrywania gazu w przemyśle górniczym.

Aby dowiedzieć się więcej, odwiedź naszą stronę poświęconą branży.

Jak działają czujniki elektrochemiczne? 

Czujniki elektrochemiczne są najczęściej stosowane w trybie dyfuzyjnym, w którym gaz z otoczenia przedostaje się przez otwór w ściance komórki. Niektóre przyrządy wykorzystują pompę do dostarczania próbek powietrza lub gazu do czujnika. Aby zapobiec przedostawaniu się wody lub olejów do wnętrza komory, na otworze umieszcza się membranę z PTFE. Zakresy i czułości czujników mogą być zróżnicowane dzięki zastosowaniu otworów o różnych rozmiarach. Większe otwory zapewniają wyższą czułość i rozdzielczość, natomiast mniejsze otwory zmniejszają czułość i rozdzielczość, ale zwiększają zasięg.

Korzyści

Czujniki elektrochemiczne mają wiele zalet.

  • Może być specyficzny dla konkretnego gazu lub pary w zakresie części na milion. Stopień selektywności zależy jednak od typu czujnika, gazu docelowego i stężenia gazu, do którego wykrywania czujnik jest przeznaczony.
  • Wysoka powtarzalność i dokładność. Po skalibrowaniu do znanego stężenia, czujnik zapewnia dokładny i powtarzalny odczyt dla gazu docelowego.
  • Nie jest podatny na zatrucie innymi gazami, a obecność innych oparów z otoczenia nie skraca ani nie ogranicza żywotności czujnika.
  • Mniej kosztowne niż większość innych technologii wykrywania gazów, takich jak IR lub PID czy PID. Bardziej ekonomiczne są również czujniki elektrochemiczne.

Problemy z nadwrażliwością krzyżową

Czułość krzyżowa występuje wtedy, gdy gaz inny niż monitorowany / wykrywany może wpływać na odczyt z czujnika elektrochemicznego. Powoduje to, że elektroda w czujniku reaguje nawet wtedy, gdy gaz docelowy nie jest w rzeczywistości obecny, lub powoduje niedokładny odczyt i/lub alarm dla tego gazu. Wrażliwość krzyżowa może powodować kilka rodzajów niedokładnych odczytów w elektrochemicznych detektorach gazu. Mogą to być odczyty pozytywne (wskazujące na obecność gazu, mimo że w rzeczywistości go nie ma, lub wskazujące poziom tego gazu powyżej jego rzeczywistej wartości), negatywne (zmniejszona reakcja na gaz docelowy, sugerująca, że jest on nieobecny, podczas gdy jest obecny, lub odczyt sugerujący, że stężenie gazu docelowego jest niższe niż jest), lub też gaz zakłócający może powodować inhibicję.

Czynniki wpływające na żywotność czujnika elektrochemicznego

Istnieją trzy główne czynniki wpływające na żywotność czujnika, w tym temperatura, narażenie na bardzo wysokie stężenia gazów i wilgotność. Inne czynniki obejmują elektrody czujnika oraz ekstremalne wibracje i wstrząsy mechaniczne.

Skrajne temperatury mogą wpływać na trwałość czujnika. Producent podaje zakres temperatur roboczych dla urządzenia: zazwyczaj od -30˚C do +50˚C. Czujniki wysokiej jakości będą jednak w stanie wytrzymać chwilowe przekroczenia tych limitów. Krótkotrwałe (1-2 godziny) wystawienie czujników H2S lub CO na działanie temperatury 60-65˚C jest dopuszczalne, ale powtarzające się przypadki spowodują odparowanie elektrolitu, przesunięcie odczytu linii podstawowej (zera) i spowolnienie reakcji.

Narażenie na działanie bardzo wysokich stężeń gazów może również pogorszyć działanie czujnika. Elektrochemiczne czujniki są zazwyczaj testowane poprzez wystawienie ich na działanie nawet dziesięciokrotnie wyższych stężeń niż te, na które są zaprojektowane. Czujniki skonstruowane przy użyciu wysokiej jakości materiału katalizatora powinny być w stanie wytrzymać takie narażenia bez zmian w składzie chemicznym lub długotrwałej utraty wydajności. Czujniki z mniejszym obciążeniem katalizatora mogą ulec uszkodzeniu.

Najbardziej znaczący wpływ na żywotność czujnika ma wilgotność. Idealne warunki środowiskowe dla czujników elektrochemicznych to 20˚C i 60% RH (wilgotności względnej). Gdy wilgotność otoczenia wzrośnie powyżej 60% RH, woda zostanie wchłonięta do elektrolitu, powodując jego rozcieńczenie. W skrajnych przypadkach zawartość cieczy może wzrosnąć 2-3 krotnie, co może spowodować wyciek z korpusu czujnika, a następnie przez styki. Poniżej 60%RH woda w elektrolicie zacznie się odwadniać. Czas reakcji może ulec znacznemu wydłużeniu, ponieważ elektrolit ulega odwodnieniu. Elektrody czujników mogą w nietypowych warunkach zostać zatrute przez gazy zakłócające, które adsorbują się na katalizatorze lub wchodzą z nim w reakcję, tworząc produkty uboczne, które hamują działanie katalizatora.

Ekstremalne wibracje i wstrząsy mechaniczne mogą również uszkodzić czujniki poprzez pęknięcie spoin łączących platynowe elektrody, listwy łączące (lub druty w niektórych czujnikach) i styki.

Normalna" żywotność czujnika elektrochemicznego

Elektrochemiczne czujniki powszechnie występujących gazów, takich jak tlenek węgla czy siarkowodór, mają okres eksploatacji zwykle określany na 2-3 lata. W przypadku bardziej egzotycznych gazów, takich jak fluorowodór, trwałość czujnika może wynosić tylko 12-18 miesięcy. W idealnych warunkach (stabilna temperatura i wilgotność w zakresie 20˚C i 60% wilgotności względnej), bez obecności zanieczyszczeń, czujniki elektrochemiczne mogą pracować przez ponad 4000 dni (11 lat). Okresowe wystawienie na działanie gazu docelowego nie ogranicza trwałości tych maleńkich ogniw paliwowych: czujniki wysokiej jakości mają dużą ilość materiału katalitycznego i wytrzymałe przewodniki, które nie ulegają wyczerpaniu w wyniku reakcji.

Produkty

Ponieważ czujniki elektrochemiczne są bardziej ekonomiczne, Mamy w ofercie produkty przenośne oraz produkty stacjonarne które wykorzystują ten typ czujnika do wykrywania gazów.

Aby dowiedzieć się więcej, odwiedź stronę naszą stronę techniczną, aby uzyskać więcej informacji.

Co jest tak ważne w zakresie pomiarowym moich monitorów?

Co to jest zakres pomiarowy monitora?

Monitorowanie gazu jest zazwyczaj mierzone w zakresie PPM (części na milion), w procentach objętości lub w procentach LEL (dolnej granicy wybuchowości), co pozwala kierownikom ds. bezpieczeństwa upewnić się, że ich operatorzy nie są narażeni na potencjalnie szkodliwe poziomy gazów lub substancji chemicznych. Monitorowanie gazu może odbywać się zdalnie, aby upewnić się, że obszar jest czysty przed wejściem pracownika, jak również monitorowanie gazu za pomocą urządzenia zamocowanego na stałe lub noszonego na ciele urządzenia przenośnego, aby wykryć wszelkie potencjalne wycieki lub niebezpieczne obszary w trakcie zmiany roboczej.

Dlaczego monitory gazów są niezbędne i jakie są zakresy niedoborów lub wzbogacenia?

Istnieją trzy główne powody, dla których monitory są potrzebne; jest to niezbędne do wykrycia niedoboru lub wzbogacenia tlenu, ponieważ zbyt mała ilość tlenu może uniemożliwić funkcjonowanie organizmu ludzkiego, prowadząc do utraty przytomności przez pracownika. Jeżeli poziom tlenu nie zostanie przywrócony do normalnego poziomu, pracownik jest narażony na ryzyko śmierci. Atmosfera jest uważana za ubogą, gdy stężenie O2 jest niższe niż 19,5%. W konsekwencji, środowisko, w którym jest zbyt dużo tlenu jest równie niebezpieczne, ponieważ stanowi to znacznie zwiększone ryzyko pożaru i eksplozji, o czym mówi się, gdy poziom stężenia O2 wynosi ponad 23,5%.

Monitory są wymagane w przypadku obecności gazów toksycznych, które mogą powodować znaczne szkody dla organizmu ludzkiego. Siarkowodór (H2S) jest tego klasycznym przykładem. H2S jest wydzielany przez bakterie, gdy rozkładają one materię organiczną, Ze względu na to, że gaz ten jest cięższy od powietrza, może on wypierać powietrze prowadząc do potencjalnych szkód dla osób obecnych w pomieszczeniu, a także jest trucizną o szerokim spektrum działania.

Dodatkowo, monitory gazowe mają zdolność do wykrywania gazów palnych. Niebezpieczeństwa, którym można zapobiec stosując monitor gazów to nie tylko wdychanie, ale również potencjalne zagrożenie spowodowane spalaniem. monitory gazów z czujnikiem zakresu LEL wykrywająs i ostrzegają przed gazami palnymi.

Dlaczego są one ważne i jak działają?

Zakres pomiarowy lub zakres pomiarowy to całkowity zakres, który urządzenie może zmierzyć w normalnych warunkach. Termin normalne oznacza brak limitów nadciśnienia (OPL) oraz w granicach maksymalnego ciśnienia roboczego (MWP). Wartości te można zazwyczaj znaleźć na stronie internetowej produktu lub w arkuszu danych technicznych. Zakres pomiarowy może być również obliczony poprzez określenie różnicy pomiędzy górną granicą zakresu (URL) i dolną granicą zakresu (LRL) urządzenia. Przy próbie określenia zasięgu czujnika nie chodzi o identyfikację obszaru w stopie kwadratowej lub w stałym promieniu od czujnika, ale o identyfikację plonowania lub dyfuzji monitorowanego obszaru. Proces ten zachodzi, gdy czujniki reagują na gazy przenikające przez membrany monitora. Dlatego urządzenia te mają zdolność do wykrywania gazu, który jest w bezpośrednim kontakcie z monitorem. Podkreśla to znaczenie zrozumienia zakresu pomiarowego detektorów gazu i uwypukla ich znaczenie dla bezpieczeństwa pracowników przebywających w tych środowiskach.

Czy są jakieś produkty, które są dostępne?

Crowcon oferuje szereg przenośnych monitorów; Przenośny detektor wielogazowy Gas-Pro Przenośny detektor wielogazowy oferuje wykrywanie do 5 gazów w kompaktowym i wytrzymałym rozwiązaniu. Posiada czytelny wyświetlacz montowany na górze, dzięki czemu jest łatwy w użyciu i optymalny do wykrywania gazów w przestrzeniach zamkniętych. Opcjonalna pompa wewnętrzna, aktywowana za pomocą płyty przepływowej, eliminuje ból związany z testowaniem przed wejściem i umożliwia noszenie Gas-Pro w trybie pompowania lub dyfuzji.

Przenośny T4 Przenośny detektor gazu 4 w 1 zapewnia skuteczną ochronę przed 4 typowymi zagrożeniami gazowymi: tlenkiem węgla, siarkowodorem, gazami palnymi i zanikiem tlenu. Detektor wielogazowy T4 jest teraz wyposażony w ulepszoną detekcję pentanu, heksanu i innych długołańcuchowych węglowodorów. Oferując zgodność z przepisami, solidność i niski koszt posiadania w prostym w użyciu rozwiązaniu. T4 zawiera szeroką gamę zaawansowanych funkcji, które sprawiają, że codzienne użytkowanie jest łatwiejsze i bezpieczniejsze.

Przenośny detektor Gasman jest kompaktowy i lekki, a jednocześnie w pełni wzmocniony do pracy w najtrudniejszych warunkach przemysłowych. Charakteryzuje się prostą obsługą za pomocą jednego przycisku, posiada duży, czytelny wyświetlacz stężenia gazu oraz alarmy dźwiękowe, wizualne i wibracyjne.

Crowcon oferuje również elastyczny asortyment stacjonarnych detektorów gazu, które mogą wykrywać gazy palne, toksyczne i tlen, informować o ich obecności i uruchamiać alarmy lub powiązane urządzenia. Stosujemy różnorodne technologie pomiarowe, ochronne i komunikacyjne, a nasze stacjonarne detektory sprawdziły się w wielu trudnych warunkach, w tym w poszukiwaniach ropy i gazu, oczyszczaniu wody, zakładach chemicznych i hutach stali. Te stacjonarne detektory gazu są wykorzystywane w wielu zastosowaniach, w których niezawodność, niezawodność i brak fałszywych alarmów mają zasadnicze znaczenie dla wydajnego i skutecznego wykrywania gazów. Są to między innymi sektory produkcji motoryzacyjnej i lotniczej, obiekty naukowe i badawcze oraz zakłady medyczne, cywilne i handlowe o wysokim stopniu wykorzystania.

Czujniki Crowcon nie śpią podczas pracy

Czujniki MOS (metal oxide semiconductor) są uważane za jedno z najnowszych rozwiązań w zakresie wykrywania siarkowodoru (H2S) w temperaturach wahających się od 50°C do połowy lat dwudziestych, a także w wilgotnym klimacie, np. na Bliskim Wschodzie.

Jednak użytkownicy i specjaliści zajmujący się detekcją gazów zdali sobie sprawę, że czujniki MOS nie są najbardziej niezawodną technologią detekcji. W tym blogu omówiono, dlaczego ta technologia może być trudna w utrzymaniu i jakie problemy mogą napotkać użytkownicy.

Jedną z głównych wad tej technologii jest odpowiedzialność czujnika za "przejście w stan uśpienia", gdy przez pewien czas nie napotka on gazu. Jest to oczywiście ogromne zagrożenie dla bezpieczeństwa pracowników w tym obszarze... nikt nie chce mieć do czynienia z detektorem gazu, który ostatecznie nie wykrywa gazu.

Czujniki MOS wymagają grzałki do wyrównania temperatur, co umożliwia im uzyskanie spójnego odczytu. Jednakże, po pierwszym włączeniu grzałka potrzebuje czasu na rozgrzanie się, co powoduje znaczne opóźnienie pomiędzy włączeniem czujnika a jego reakcją na niebezpieczny gaz. Dlatego producenci MOS zalecają, aby przed kalibracją pozwolić czujnikowi na wyrównanie temperatur przez 24-48 godzin. Niektórzy użytkownicy mogą uznać to za utrudnienie w produkcji, jak również wydłużenie czasu serwisowania i konserwacji.

Opóźnienie grzałki nie jest jedynym problemem. Zużywa on dużo energii, co stwarza dodatkowy problem związany z gwałtownymi zmianami temperatury w kablu zasilającym DC, powodującymi zmiany napięcia w głowicy detektora i niedokładności w odczycie poziomu gazu. 

Jak sugeruje nazwa półprzewodników z tlenków metali, czujniki te bazują na półprzewodnikach, które są uznawane za dryfujące wraz ze zmianami wilgotności - co nie jest idealne dla wilgotnego klimatu Bliskiego Wschodu. W innych branżach półprzewodniki są często pokrywane żywicą epoksydową, aby tego uniknąć, jednak w przypadku czujnika gazu taka powłoka uniemożliwiłaby działanie mechanizmu wykrywania gazu, ponieważ gaz nie mógłby dotrzeć do półprzewodnika. Urządzenie jest również narażone na działanie kwaśnego środowiska tworzonego przez lokalny piasek na Bliskim Wschodzie, co wpływa na przewodność i dokładność odczytu gazu.

Innym istotnym czynnikiem wpływającym na bezpieczeństwo czujnika MOS jest fakt, że przy poziomachH2Sbliskich zeru mogą występować fałszywe alarmy. Często czujnik jest używany z poziomem "tłumienia zera" na panelu sterowania. Oznacza to, że panel kontrolny może pokazywać odczyt zerowy przez pewien czas po tym, jak poziomH2Szaczął rosnąć. To późne zarejestrowanie obecności gazu na niskim poziomie może opóźnić ostrzeżenie o poważnym wycieku gazu, możliwości ewakuacji i skrajnym zagrożeniu życia.

Czujniki MOS wyróżniają się szybką reakcją naH2S, dlatego konieczność stosowania spieku niweluje tę zaletę. Ze względu na to, żeH2Sjest gazem "lepkim", może być adsorbowany na powierzchniach, w tym na spiekach, w rezultacie spowalniając szybkość, z jaką gaz dociera do powierzchni detekcyjnej.

Aby wyeliminować wady czujników MOS, ponownie przeanalizowaliśmy i ulepszyliśmy technologię elektrochemiczną dzięki naszemu nowemu wysokotemperaturowemu (HT) czujnikowiH2Sdla XgardIQ. Nowe rozwiązania naszego czujnika pozwalają na pracę w temperaturze do 70°C przy 0-95%rh - co stanowi znaczącą różnicę w porównaniu z innymi producentami, którzy twierdzą, że wykrywają do 60°C, szczególnie w trudnych warunkach Bliskiego Wschodu.

Nasz nowy czujnik HTH2Sokazał się być niezawodnym i odpornym rozwiązaniem do wykrywaniaH2Sw wysokich temperaturach - rozwiązaniem, które nie zasypia w pracy!

Kliknij tutaj, aby uzyskać więcej informacji na temat naszego nowego wysokotemperaturowego (HT) czujnikaH2Sdla XgardIQ.

Pomysłowe rozwiązanie problemu wysokotemperaturowego H2S

Ze względu na ekstremalne upały panujące na Bliskim Wschodzie, które w szczycie lata sięgają nawet 50°C, konieczność niezawodnego wykrywania gazów ma krytyczne znaczenie. W tym blogu skupiamy się na wymogu wykrywania siarkowodoru (H2S) - jest to od dawna aktualne wyzwanie dla branży detekcji gazów na Bliskim Wschodzie.

Łącząc nową sztuczkę ze starą technologią, mamy odpowiedź na niezawodne wykrywanie gazu w środowiskach o surowym klimacie Bliskiego Wschodu. Nasz nowy wysokotemperaturowy (HT) czujnikH2Sdla XgardIQ został ponownie przeanalizowany i ulepszony przez nasz zespół ekspertów Crowcon poprzez połączenie dwóch pomysłowych adaptacji jego oryginalnej konstrukcji.

W tradycyjnych czujnikachH2S, detekcja opiera się na technologii elektrochemicznej, gdzie elektrody są wykorzystywane do wykrywania zmian wywołanych w elektrolicie przez obecność gazu docelowego. Jednakże wysokie temperatury w połączeniu z niską wilgotnością powodują wysychanie elektrolitu, co pogarsza wydajność czujnika, tak że musi on być regularnie wymieniany, co oznacza wysokie koszty wymiany, czas i wysiłek.

Nowy czujnik jest tak zaawansowany w stosunku do swojego poprzednika, że jest w stanie zatrzymać poziom wilgoci wewnątrz czujnika, zapobiegając parowaniu nawet w klimacie wysokich temperatur. Unowocześniony czujnik oparty jest na żelu elektrolitycznym, dostosowanym tak, aby był bardziej higroskopijny i dłużej zapobiegał odwodnieniu.

Poza tym, pory w obudowie czujnika zostały zmniejszone, co ogranicza wydostawanie się wilgoci na zewnątrz. Ten wykres pokazał utratę wagi, która jest wskaźnikiem utraty wilgoci. Podczas przechowywania w temperaturze 55°C lub 65°C przez rok traci się zaledwie 3% wagi. Inny typowy czujnik straciłby 50% swojej wagi w ciągu 100 dni w tych samych warunkach.

W celu optymalnego wykrywania wycieków nasz nowy, niezwykły czujnik jest również wyposażony w opcjonalną obudowę zdalnego czujnika, podczas gdy ekran wyświetlacza i przyciski sterujące nadajnika są umieszczone w sposób zapewniający bezpieczny i łatwy dostęp dla operatorów w odległości do 15 metrów.

 

Wyniki naszego nowego czujnika HTH2Sdla XgardIQ mówią same za siebie, ze środowiskiem pracy do 70°C przy 0-95%rh, a także czasem reakcji 0-200ppm i T90 poniżej 30 sekund. W przeciwieństwie do innych czujników do wykrywaniaH2S, jego żywotność wynosi ponad 24 miesiące, nawet w trudnych warunkach klimatycznych, takich jak Bliski Wschód.

Odpowiedź na wyzwania związane z wykrywaniem gazów na Bliskim Wschodzie znajduje się w rękach naszego nowego czujnika, który zapewnia użytkownikom opłacalne i niezawodne działanie.

Kliknij tutaj więcej informacji o Crowcon HT H2S senslub.

Zagrożenia wybuchem w zbiornikach obojętnych i sposoby ich unikania

Siarkowodór (H2S) jest znany z tego, że jest niezwykle toksyczny, jak również silnie korozyjny. W środowisku zbiorników obojętnych stanowi on dodatkowe i poważne zagrożenie spalania, które, jak się podejrzewa, było w przeszłości przyczyną poważnych eksplozji.

Siarkowodór może występować na poziomie % obj. w "kwaśnej" ropie lub gazie. Paliwo może również stać się "kwaśne" w wyniku działania bakterii redukujących siarczany znajdujących się w wodzie morskiej, często obecnych w ładowniach tankowców. Dlatego ważne jest, aby nadal monitorować poziomH2S, ponieważ może się on zmieniać, szczególnie na morzu. TenH2Smoże zwiększyć prawdopodobieństwo pożaru, jeśli sytuacja nie jest odpowiednio zarządzana.

Zbiorniki są zazwyczaj wyłożone żelazem (czasami ocynkowane). Żelazo rdzewieje, tworząc tlenek żelaza (FeO). W obojętnej przestrzeni zbiornika, tlenek żelaza może reagować zH2Stworząc siarczek żelaza (FeS). Siarczek żelaza jest piroforem, co oznacza, że może spontanicznie zapalić się w obecności tlenu.

Wyłączenie elementów ognia

Zbiornik pełen oleju lub gazu stanowi w odpowiednich okolicznościach oczywiste zagrożenie pożarowe. Trzy elementy ognia to paliwo, tlen i źródło zapłonu. Bez tych trzech rzeczy pożar nie może się rozpocząć. Powietrze składa się w około 21% z tlenu. Dlatego powszechnym sposobem kontrolowania ryzyka pożaru w zbiorniku jest usunięcie z niego jak największej ilości powietrza poprzez wypłukanie go za pomocą gazu obojętnego, takiego jak azot lub dwutlenek węgla. Podczas rozładunku zbiornika należy zadbać o to, aby paliwo zostało zastąpione gazem obojętnym, a nie powietrzem. W ten sposób usuwany jest tlen i zapobiega się zaprószeniu ognia.

Z definicji, w środowisku obojętnym nie ma wystarczającej ilości tlenu, aby mógł wybuchnąć pożar. Jednak w pewnym momencie do zbiornika będzie musiało zostać wpuszczone powietrze - na przykład w celu zapewnienia bezpieczeństwa pracownikom obsługi technicznej. Teraz istnieje szansa na połączenie trzech elementów pożaru. Jak należy go kontrolować?

  • Tlen musi być wpuszczony do
  • Może tam być obecny FeS, który pod wpływem tlenu zacznie iskrzyć.
  • Elementem, który można kontrolować jest paliwo.

Jeśli całe paliwo zostało usunięte, a połączenie powietrza i FeS powoduje iskrę, nie może to zaszkodzić.

Monitorowanie elementów

Z powyższego jasno wynika, jak ważne jest śledzenie wszystkich elementów, które mogą spowodować pożar w zbiornikach paliwa. Tlen i paliwo można bezpośrednio monitorować za pomocą odpowiedniego detektora gazu, takiego jak Gas-Pro TK. Zaprojektowany dla tych specjalistycznych środowisk, Gas-Pro TK automatycznie radzi sobie z pomiarem zbiornika pełnego gazu (mierzonego w % obj.) i zbiornika prawie pustego (mierzonego w %LEL). Gas-Pro TK może powiedzieć, kiedy poziom tlenu jest wystarczająco niski, aby bezpiecznie załadować paliwo lub wystarczająco wysoki, aby personel mógł bezpiecznie wejść do zbiornika. Innym ważnym zastosowaniem dla Gas-Pro TK jest monitorowanieH2S, aby umożliwić ocenę prawdopodobnej obecności pryloforu, siarczku żelaza.

Zagrożenia związane z siarkowodorem

Następny w naszej serii krótkich filmów wideo jest nasz fakt dotyczący wykrywania siarkowodoru.

Gdzie występujeH2S?

Siarkowodór stanowi poważne zagrożenie dla pracowników wielu gałęzi przemysłu. Jest on produktem ubocznym procesów przemysłowych, takich jak rafinacja ropy naftowej, górnictwo, papiernie i wytapianie żelaza. Jest on również powszechnym produktem biodegradacji materii organicznej; kieszenieH2Smogą gromadzić się w gnijącej roślinności lub w samych ściekach i uwalniać się po ich naruszeniu.

Continue reading "Zagrożenia związane z siarkowodorem"

Przestrzenie zamknięte nadal są śmiertelnie niebezpieczne

Pomimo znacznej ilości publikacji na temat zagrożeń związanych z wchodzeniem do przestrzeni zamkniętej (CSE), ostatnie doniesienia sugerują, że ludzie nadal nie w pełni rozumieją ryzyko lub nie podejmują odpowiednich środków ostrożności. W wiadomościach z tego tygodnia, Właściciel farmy w Dorset został ukarany grzywną za poważne uchybienia w zakresie bezpieczeństwa po tym, jak jeden z jego pracowników zmarł w następstwie narażenie na toksyczne gazy wydostające się ze zbiornika podczas jego konserwacji.

Continue reading "Przestrzenie zamknięte to nadal śmiertelnie niebezpieczne miejsca"

Wykrywanie gazów w ściekach

Istnieje wiele pytań dotyczących właściwego podejścia do monitorowania niebezpiecznych gazów w przemyśle ściekowym. Jednym z proponowanych przeze mnie sposobów jest podzielenie ich na trzy główne obszary do rozważenia:

Continue reading "Detekcja gazów w ściekach"

Monitorowanie i analiza gazów pochodzących z wysypisk śmieci

Wraz z upowszechnieniem się recyklingu zmniejsza się wykorzystanie składowisk, ale nadal jest to ważny sposób unieszkodliwiania odpadów. Na przykład dane za lata 2012-13 z Defry (departamentu środowiska, żywności i spraw wiejskich) dla Anglii pokazują, że 8,51 mln ton, czyli 33,9% odpadów zebranych przez władze lokalne trafiło na składowiska.

Continue reading "Monitoring i analiza gazów składowiskowych"