Reset & Recalibrate – A Guide to FGA Calibration

Ensuring your flue gas analyser (FGA) is regularly maintained goes without saying, however the hows and whys take a little more digging into. This article breaks down the calibration process and highlights handy tips and tricks for maintenance and best practice. 

 

The Act of Calibration 

Calibrating an FGA involves checking the sensors to ensure accurate measurement of a known concentration of certified calibration gas. To do this, the reading needs to be adjusted to match the gas concentration through an initial sensor calibration of the new or existing unit.

Next up is a calibration drift – this is done using existing instruments to bring the reading back after the drift occurs. Measuring the amount of drift in the gauge is a chance to see how far into inaccurate territory it has moved, and rule out measurement errors moving forward. 

 

Sprint Pro Calibration

Regularity is key

Sensors degrade over time with each sensor having a different life span of optimum operation, whether it is an electrochemical, catalytic bead and infra-red sensors. Regular calibration raises the gain levels and brings the sensor back in line to avoid dangerous incorrect readings. 

Once the sensor reaches a certain point it cannot be brought back into the correct position and this is the time when a new sensor needs to be installed. 

 

Explaining the calibration procedure 

The first step of the process is to set the device to calibration mode. This feeds a test gas of a known concentration onto the sensors to see how they respond. The gain levels are adjusted within the sensor to match the readings to the concentration fed in whilst mitigating drop off. 

The new settings are locked into the device’s firmware and a calibration report is produced, creating a PASS or FAIL result. 

Best Practice Tips and Tricks

Here are some best practice recommendations to help you maintain your FGA.

  • Clear out the water trap regularly – moisture is a by-product of combustion and can get sucked into the FGA when a test is undertaken. Water damage is the primary cause of damage in flue gas analysers, so it is imperative to check, empty and replace the unit’s inbuilt water traps and filters to protect from this.
  • Purge the device in clean air before powering down – noxious gases are drawn from the flue and passed over the sensors to gain a reading. After a test is completed and the system closes down some of that gas remains trapped inside. This can cause corrosion damage and shorten the life of the unit, so purging in clean air prior to shut down is a must.
  • Take inside to protect from cold weather conditions – to lessen the chances of condensation build up and water damage within your FGA make sure to remove the unit from your van overnight. This also reduces the risk of theft. 
  • Use approved chargers with outputs tailored for target device – non approved chargers cause damage to the battery and lessen charge retention, or even impairment to the battery and IC chips of the device itself.  
  • Check the devices’ probes and connector pipes – any splits or cracks in the rubber house will cause incorrect readings. Performing periodic checks on your hoses to ensure they are in good operating condition is a useful habit. 

 

All-Inclusive Service Options 

You have multiple options when sending your device off for it’s annual service and calibration:

Send it direct to us

Crowcon’s innovative Autocal jig system manages the end to end calibration process for Sprint Pro FGA’s. An out-of-calibration unit leads to errors in the combustion reports produced and could disrupt your day to day. 

Autocal servicing is easy. Simply bring your FGA to one of the DPD drop off locations, your unit will be inspected, tested and calibrated within two days and returned to you using DPD’s express return trackable option.

For more information please check out https://shop.crowcon.com/

Send it to your local store

Drop your device in to your local trade counter or specialist servicing centre at a time convenient to you and they will work with us to facilitate the annual calibration.
They will contact you to come and collect your device once the calibration is completed.

How to correctly sample gases using pumped instruments

In many situations, workers must perform pre-entry gas checks, to make sure that a confined space is safe before entering. This is often a requirement arising from risk assessment or to allow the issuing of permits to work, or is simply needed because the area is inherently risky. Whatever the reason, using a pumped device in conjunction with a sampling tube is a great way to perform pre-entry checks to check that a confined space is safe before entry.

However, taking measurements in this way brings its own set of challenges and dangers, and when using Crowcon products in pumped or manual sampling modes, all operators should take care to follow these instructions:

• It is strongly recommended that, before proceeding, a function check is performed using the pump and sample tube with the gas/vapour to be detected.

• To reduce the risk of absorption of the gas/vapour in the sample tube, ensure the temperature of the sampling tube is above the flashpoint temperature of the target vapour.

• Ensure the monitor is correctly calibrated for the target gas/vapour.

• Only use the sample tube supplied by Crowcon. It is strongly recommended that ‘reactive gas tubing’ (part no. AC0301) is used for sampling gases/vapours that are likely to be adsorbed (for example, toluene, chlorine, ammonia, hydrogen sulphide, ozone, hydrogen chloride, NOx, etc).

• Keep the sample tube length as short as possible.

• Please allow sufficient time for the gas/vapour to reach the sensor; allow at least 3 seconds per metre plus the normal T90 response time of the sensor (typically 30–40 seconds).

In addition, please note that some of the gases that can be measured by our gas detection products are classified as ‘reactive’ gases.

A reactive gas will react with, or be absorbed by, the material(s) with which it comes into contact. As a result, the gas concentration reaching the sensor can be reduced, leading to an incorrect reading.

The following list includes some (but not all) reactive gases, which are listed with the appropriate calibration gas. Please contact Crowcon for specific gas concentration information and cross-calibration values).

Target Gas Calibration Gas
Ozone (O3) Ozone (via O3 generator)
Hydrogen Chloride (HCL) Hydrogen Chloride
Hydrogen Fluoride (HF) Hydrogen Chloride or Sulphur Dioxide
Chlorine (Cl2) Chlorine (via Cl2 generator)
Fluorine (F2) Chlorine (via Cl2 generator)
Chlorine Dioxide (ClO2) Chlorine (via Cl2 generator
Phosgene (COCl2) Chlorine (via Cl2 generator)
Sulphur Dioxide (SO2) Sulphur Dioxide
Nitrogen Dioxide (NO2) Nitrogen Dioxide
Nitrogen Monoxide (NO) Nitrogen Monoxide
Ammonia (NH3) Ammonia

• It is very important that the appropriate accessories and precautions are applied when measuring, calibrating or bump testing sensors that are targeting reactive gasses

When taking sample measurements:

• Use Teflon, FEP or PTFE tubing; the tube length must be kept as short as possible (<50 cm). Avoid connectors and unions.
• Allow the sample to flow through the regulator/pipe for at least 3 minutes, for initial absorption to occur, before attempting to get a reading.

When calibrating the above points apply in addition to the following:

• The recommended gas flow-rate is 0.5 litres per minute.
• Gas generators are recommended, instead of gas cylinders, for some very unstable gases, especially where very low ppm concentrations are required.
• Use only stainless steel regulators for cylinder gas.
• Ensure the correct calibration adaptor is used, appropriate to the specific product.

Following the above guidance will allow your pumped devices pre-entry checks to deliver accurate measurements – even with reactive gasses – and will keep staff safe and well.

TWA Resume – how Crowcon’s patented feature keeps workers safe and makes compliance easier

Most people who work with hazardous gases, and particularly anyone with responsibility for regulatory compliance, will be familiar with the various ways of measuring workplace exposures to gas. You may have heard of short- and long-term exposure limits; these are used to quantify the amount of gas a worker can be exposed to without harm, and most gas detectors track them.

But why differentiate between a short-term and long-term exposure? Well, that has mainly to do with the ways in which gases can be harmful. Some gases (hydrogen cyanide, for example) can be almost immediately fatal if inhaled at a given concentration, but some gases remain harmless if present at or below a much lower level for extended periods of time.

If a worker’s long-term exposure is more than the safe level, however, then some gases can be seriously dangerous to health. And the company in charge may become legally liable because it will have failed to comply with gas regulations.

Non-compliance can get very expensive, very quickly. It is costly in both financial and reputational terms.

Figure 1: This image shows how Crowcon’s proprietary TWA Resume feature keeps workers safe and proves a firm’s compliance, by continuing to monitor exposure to harmful gases even after a mid-shift break or other switch-off during the TWA period. Other detectors don’t do this, they assume any switch-off (e.g. for meals or to drive between sites) signals a new period of measurement, which leaves workers vulnerable to over-exposure and harm, and firms open to legal sanctions due to harm and/or non-compliance. In this image, you can see the workplace exposure limit is breached at around 14:00, but only the Crowcon device with TWA Resume alerts the user to this fact and documents it.

Why use TWAs?

Long-term and short-term workplace exposure limits (WELs) for gases are set out by local regulatory bodies. In the UK, the HSE document EH40 applies. Chronic exposure is often measured via a time-weighted average, or TWA. That means the worker’s exposure to a gas is monitored across a given period, usually 8 hours, to make sure the gas(es) remain(s) at or below the WEL throughout that time.

Unfortunately, it is incredibly easy to mess up a TWA measurement and thus fall foul of the regulations. This is because many standard gas detectors erase the TWA timer history when they are switched off, even if the 8-hour/TWA measurement period is ongoing. So, if an operator turns off one of these detectors because they are having lunch or moving between sites, then switches it back on again when they get back to work (bearing in mind this is a continuation of the TWA period they have already begun to track), the detector will assume that they are beginning a new TWA measurement period.

Clearly, this breaches regulations and can be very dangerous – Figure 1, above, shows why. In this example, the worker exceeds the safe limit at around 14:00 but the traditional device does not ‘see’ this or alert them. The Crowcon device with TWA Resume, however, does sound the alert. And that may save both the worker and the company from a great deal of harm.

What is TWA Resume?

The Crowcon T4 and Gas-Pro ranges have Crowon’s proprietary TWA Resume feature. This  innovative and unique functionality makes sure accurate TWAs are recorded for each and every 8-hour/TWA period, keeping employees safe and removing the risk of non-compliance. Furthermore, it makes it easy for a firm to prove their compliance in the face of any legal claim.

TWA Resume is a patented feature only found on Crowcon devices. When turned off during the TWA measurement period, it stores TWA data in its memory. When a worker switches it back on, they can choose to resume measurement from where it left off, or start a new TWA measurement.

T4 and Gas-Pro detectors store this data in their logs, where is available for further analysis and to prove compliance. Even better, TWA alarms and near-miss data can now be easily exported into Crowcon Connect, a cloud-based portal that gives customers total data visibility. This makes it easy for them to prove compliance, and to be sure that their workers are safe.

Because TWA Resume is a patented Crowcon feature, only Crowcon can provide it. If you want to keep your staff safe while making regulatory compliance much easier, please contact us. We’ll be happy to give you more information on our patented TWA resume feature and discuss how it can help you and your business.

Covid-19 is making oxygen management crucial for hospitals

The current Covid-19 pandemic is pushing healthcare to the limit – but oxygen management in hospitals has become a particular challenge for health systems worldwide. Within the healthcare environment, the safety of the healthcare providers and their patients is paramount.

When patients are hospitalised with Covid-19 they often need additional oxygen, and the logistics and sheer volume of this demand is forcing hospitals to take drastic action to manage oxygen use.

A recent BBC documentary, for which a film crew traced the impact of Covid-19 on the Royal Free Hospital in London, clearly shows how the problems of oxygen management are taxing front-line medics and NHS managers, and directly affecting patient care.

At the time of filming, 80% of patients at the Royal Free had Covid-19 and most were on supplementary oxygen at between five and thirty litres per second. As Rui Reis, operations manager for estates at the trust, explains in the film, the hospital used a month’s supply of oxygen in two days and was faced with the prospect of drops in the pressure of patients’ oxygen and in delivery levels – with potentially catastrophic results.

In more normal times, the hospital’s estates management could act to mitigate the problem. But all such actions would require a 4–6-hour shutdown of the oxygen supply.

And in a pandemic, that simply is not an option.

Striking a Balance

The Royal Free had never experienced such oxygen issues before, and soon realised that a balance had to be struck between reducing oxygen use and simultaneously maintaining patient care and the oxygen infrastructure. As a result, they took various measures, for example doctors decided to reduce target blood oxygen levels from 92–94% to 90–94%, while giving clinicians the option to increase oxygen levels in line with patient need. And operations director Rachel Anticoni ensured that every oxygen outlet was closed off where possible to avoid leaks, rather like stopping a dripping tap.

In the film, Rachel Anticoni reports their solutions had reduced oxygen use by around 3,000 litres per minute.

Gas monitoring makes the difference

The Royal Free offers a fine example of how good gas management can improve outcomes and operations. This is something that Crowcon knows about, because we already supply hospitals with our oxygen detectors – these provide early warning of  oxygen-riched environments (which can be an explosion risk) and can also be used to detect the leaks that drain oxygen capacity.

To summarise:

  • The Covid-19 pandemic means that hospitals must now use unprecedented amounts of oxygen.
  • This has caused them to struggle with capacity and mitigate against unnecessary use to ensure supplies are sustainable.
  • Crowcon oxygen detectors can help, by warning hospitals of oxygen leaks and preventing the occurrence of oxygen-rich environments.
  • In this way, gas monitoring protects health system resources and patients alike.

Find out more about Oxygen risks in healthcare environments in our infographic here.

If you want to know how we can help with monitoring oxygen use to ensure supply or prevent oxygen rich environments pose an explosion risk, our experts can help, please get in touch.

Are you safe to re-start operations?

As governments around the world ease lockdown measures that were introduced to combat Covid-19, many of us are starting to plan how to return to business. But re-starting operations after a break can present specific gas-related problems and dangers that must be dealt with before operations begin.

A terrible example of what can happen otherwise has recently occurred in India. There, a persistent styrene leak, from a factory that had been closed due to the Covid-19 outbreak, killed at least 11 people, and harmed many more within a radius of several kilometres.

The need to check gas safety after a break in operations applies across many sectors. These include:

-Car plants

-Manufacturing facilities of all types

-Bars, restaurants and hospitality venues

-Leisure centres and swimming pools

-Refineries and chemical processing plants, where operations have been scaled back or stopped due to reduced demand

-Laboratories

-Schools and colleges

-General industrial sites that ceased operations due to Covid-19.

What are the dangers?

While the challenges arising will vary by sector, the most common include:

  • Re-pressurisation of systems. Many industries – from schools and colleges to bars and oil refineries – use pressurised systems or equipment such as boilers, steam heating systems, autoclaves, pipework, heat exchangers and refrigeration plant. If these are not correctly pressurised, they may explode, leak or cause contact injuries Any break in operations may have caused or coincided with a change (usually a drop) in pressure.

Some systems contain gases that are inherently toxic/flammable, some gases may be safe in normal process conditions but are now less safe due to changes in pressure or other conditions created by a recent shut-down. In any case, there is a legal duty to maintain pressurised systems (you can find out more from the HSE’s pages here) so it makes sense to check the system before re-starting operations, and to re-pressurise the system if required.

  • Areas used to store toxic and/or flammable gases that have not been entered for some time. This is likely to be a widespread danger because such areas are not always industrial. Swimming pool operators store chlorine; cafes, schools and colleges store gases for educational and catering purposes; food-makers, pubs and bars use gases in the manufacture and dispensing of beverages. If gas has leaked during a Covid-19 shut-down, it may endanger property and staff when operations begin again. Alternatively, the break could mean that gases are no longer stored at their optimum pressure or temperature.
  • It should also be noted that some stored goods may emit toxic or flammable gases if they have been left for a long period. For example, methane and hydrogen sulphide may be generated by organic matter that has begun to degrade or ferment.
  • Re-starting production or operations where materials/chemicals have been left unattended for some time can also be hazardous. For example, anything stored at a specific pressure may have experienced a change in that pressure, and materials stored in sub-optimal conditions (e.g. in terms of ambient temperature, pressure, exposure to light or operation) may now be unfit for purpose or even dangerous.

What should I do before re-starting operations?

Gas hazards should form part of your re-starting operations risk assessment.

When it comes to gas, Crowcon has a wealth of knowledge gathered over many years and from many installations. If you need reliable information about the gas-related dangers that may arise on your own return to operations, check out our ‘Talking Gas’ information hub, which is full of free resources to download, and our ‘Insights’ knowledge base. And if you have any other questions relating to the post-Covid return, please get in touch.

 

How aware of cross-sensitivities when using gas detectors are you?

In a perfect world, gas detector sensors would identify, isolate and measure specific gases and give precise readings for each gas in any context. Unfortunately, technology allows us to come close to that but not to achieve it completely. That is why, when dealing with electrochemical toxic sensors, we have the challenge of cross-sensitivities, sometimes known as ‘interfering gasses’.

Gas detectors generally detect a specified gas and give an alarm and/or reading in proportion to the level present. Cross-sensitivity occurs when a gas other than the gas being monitored/detected can affect the reading given by an electrochemical sensor. This causes the electrode within the sensor to react even if the target gas is not actually present, or it causes an otherwise inaccurate reading and/or alarm for that gas. Obviously, this puts the person using the sensor at risk.

Inaccuracies caused by cross-sensitivity

How not to use a gas detectorCross-sensitivity may cause several types of inaccurate reading in electrochemical gas detectors. These can be positive (indicating the presence of a gas even though it isn’t actually there, or indicating a level of that gas above its true value), negative (a reduced response to the target gas, suggesting that it is absent when it is actually present, or a reading that suggests there is a lower concentration of the target gas than there is), or the interfering gas can cause inhibition.

Inhibition occurs when the sensor simply fails to register the target gas when it is exposed to the target gas and the inhibitor together, or the inhibitor causes the sensor to stop registering the target gas for some time (which may be hours or even days) after exposure to the inhibitor.

Here are some examples of each error type:

  • Positive response error: a CO sensor has a positive response to H2 at a rate of 60%. Thus, when the sensor detecting CO sees 200ppm of H2 it indicates 60% of 200ppm (around 120ppm).
  • Negative response error: an SO2 sensor has a –120% response to NO2. So, if it sees 5ppm of NO2 at the same time as 5ppm of SO2, the reading is reduced by 6ppm, which (depending on the type of sensor involved) gives a 0ppm reading or negative value.
  • Inhibition: SO2 sensors may be inhibited by NH3, and take many hours to recover and respond to SO2

All of these errors can have adverse effects. Clearly, danger arises when toxic gas is present and the sensor does not read correctly. But even when cross-sensitivity causes an over-reading or false positive, time and resources can be wasted by needless evacuations, ventilation and other unscheduled downtime.

Some manufacturers publish cross-sensitivity data and charts, and these can give some indication of how cross-sensitivities may influence readings in those products. However, it is important not to rely on these too heavily: there can be huge differences between electrochemical sensors, manufacturers may change their sensor designs and specifications at short notice, and scientific understanding is constantly evolving. So, it is a good idea to maintain dialogue with the manufacturer’s technical support team, who will be aware of the latest information and best placed to advise on a particular sensor. It is also sensible to ensure that any staff involved in gas detection are aware of the nature of cross-sensitivity and interference, and alert to its likely effects.

Keeping your gas monitors clean during COVID-19

During this challenging time, keeping your gas monitor clean is more important than ever to ensure you’re keeping yourself, and others, safe.

Cleaning your monitor

The following procedure and precautions should be noted if you intend to clean your Crowcon gas monitor to protect against COVID-19 transmission.

Gas monitors contain sensors that may be affected by the chemicals in cleaning compounds. In general Crowcon recommends cleaning with mild soap and a soft cloth taking care not to introduce excessive amounts of liquid into the product/sensors.

Alcohol-based cleaning products may cause a temporary response on some electrochemical sensors; potentially leading to false-alarms. It is recommended monitors are switched-off before cleaning and not switched back on until the alcohol has fully evaporated.

Cleaning agents that contain chlorine and/or silicones must be avoided, especially on monitors that contain pellistor-type flammable gas sensors as these compounds will ‘poison’ the sensor leading to permanent loss of sensitivity to gas.

Where gas monitor cleaning regimes are introduced or increased Crowcon strongly recommends that sensors are bump tested with the target gas periodically to ensure that sensors remain operational. Pellistor-type sensors in portable monitors should be tested every day before use as prescribed in the European standard EN60079-29 Part 1.

It is extremely likely that any viral agent could get trapped within the pump or filters within an instrument. Maintenance procedures should continue to be performed as described in the Operation and Maintenance Manual for the product and in-line with operating company policy.

For more information on how to keep you or your business safe during the COVID19 pandemic, get in touch and we’d be more than happy to help.

What is the life expectancy of my sensors?

Given the critical nature of gas detectors, it is important to know they are working correctly at all times. Many factors can affect the performance of gas detection sensors, and all sensors will fail eventually, so users must be vigilant and prepared to change their sensors when required. But changing sensors too early, when they actually have plenty of life left, can be a waste of time and money.

A further issue arises with purchasing and storing spares. Replacement sensors have a finite shelf life, which begins from the moment they are made. As time passes, they can degrade even if kept in ideal conditions (i.e. in a contaminant-free, temperature and humidity controlled environment  so the period between purchase and first use should be brief.

So, what should users do to extend the life of their sensors without putting people at risk?

Factors affecting sensor life

The life and/or performance of gas detection sensors can be affected by various factors, including:

  • Temperature
  • Humidity
  • Interfering gases
  • Physical factors, e.g. excessive vibration or impact
  • Contamination of or damage to the sensor e.g. by incorrect cleaning products
  • Contamination of filters or sinters e.g. by dust, sand or pests (yes spiders!)
  • Exposure to poisoning/inhibiting compounds even when the sensor is not powered.

There are multiple sensing technologies available and the life expectancy of a sensor is commonly linked to the technology employed. Electrochemical sensors tend to have a shorter life expectancy as compared to Infrared (IR) or catalytic sensors. The type of gas being detected can also have an impact of the life expectancy,  the more ‘exotic’ gases (for example chlorine or ozone) tends to be shorter than that of sensors monitoring the more common gases (carbon monoxide, hydrogen sulphide for example).

Most sensors will also suffer general wear and tear, and the damage caused is not always easy to detect, so the first rule for keeping sensors safe and in good working order is to undertake regular maintenance. This should include scheduled bump testing (also known as a gas or functional test) and calibration; while exposure to substantial volumes of gas may harm some sensors, the small amounts used in bump testing and calibration are absolutely fine

It is not always easy to tell that a sensor has failed; some of the techniques suggested are unreliable and this is not an area in which to take risks. The only sure-fire way to know a sensor is working correctly is through application of the target gas(es) in bump testing/calibration.

Planning gas sensor replacement

It makes sense for users to extend the life of their sensors as far as possible; they cost time and money to replace, after all. The ability to forward-plan and predict sensor consumption also makes sensor purchasing more efficient and helps to reduce the time spare sensors are kept in storage.

To predict and plan sensor replacement, users must understand the factors that influence their sensors’ performance. These will be specific to their own setting, which is why users must also be able to draw upon knowledge and experience built up through regular testing and calibration of sensors in their particular environment and applications.

Good quality sensors will come with a warranty, but while this may indicate a general life expectancy there are too many variables and too much at stake for it to stand alone. There really is no substitute for user knowledge and regular maintenance: with these in place, gas detector sensors are far more likely to live long and prosper.

Helping you stay safe during the BBQ season

Who doesn’t love a summer BBQ? Come rain or shine we light up our BBQs with usually the only worries being whether it will rain, or the sausages are fully cooked through.

While these are important, (especially making sure the sausages are cooked!) many of us are completely unaware of the potential risks.

Carbon monoxide is a gas that has received its fair share of publicity with many of us installing detectors in our homes and businesses, but completely unaware carbon monoxide is associated with our BBQs.

If the weather is poor, we may decide to barbeque in the garage doorway or under a tent or canopy. Some of us may even bring our BBQs into the tent after use.  These can all be potentially fatal as the carbon monoxide collects in these confined areas.

Equally with a propane or butane gas canister, we store in our garages, sheds and even our homes unaware that there is a risk of a potentially deadly combination of an enclosed space, a gas leak and a spark from an electrical device.  All of which could cause an explosion.

All of that said, BBQs are here to stay and if we use them safely, are a great way to spend a summer afternoon.  So, here is a selection of facts and tips from our safety team at Crowcon which we hope will help you enjoy a safe and delicious summer ahead!

 

Quick facts and tips about BBQ charcoals:

  • Carbon monoxide is a colourless and odourless gas so just because we can’t smell or see it, doesn’t mean it’s not there
  • Carbon monoxide is a by-product of burning fossil fuels, which include charcoal and BBQ gas
  • Always use your BBQ in a well-ventilated open area as it can accumulate to toxic levels in enclosed spaces
  • Never bring a charcoal into a tent, even if it seems cold. Remember a smouldering BBQ will still give off carbon monoxide
  • Be aware and act quickly if someone experiences the symptoms of carbon monoxide poisoning which include headaches, dizziness, breathlessness, nausea, confusion, collapse and unconsciousness. These symptoms can be potentially fatal

 

Quick facts and tips about gas cannisters:

  • Gas barbecues tend to use propane, butane or LPG (which is a mixture of the two)
  • Gas BBQs have holes in the bottom to prevent a build-up of gas. This is because gas is heavier than air so will accumulate in low areas or fill a space from the bottom up
  • To avoid the accumulation of gas, cannisters should always be stored outside, upright, in a well-ventilated area, away from heat sources, and away from enclosed low spaces
  • If you store your BBQ in the garage, make sure you disconnect the gas cannister and keep this outside
  • When you are using your BBQ, keep the cannister to one side so it isn’t underneath and close to the heat source and position the BBQ in an open space
  • Always keep the cannister away from ignition sources when changing cannisters
  • Always make sure you turn off the gas at the BBQ as well as on the regulator on the cannister, after use

 

Identifying Leaks from Natural Gas pipelines at a Safe Distance

The use of natural gas, of which methane is the principle component, is increasing worldwide. It also has many industrial uses, such as the manufacture of chemicals like ammonia, methanol, butane, ethane, propane and acetic acid; it is also an ingredient in products as diverse as fertilizer, antifreeze, plastics, pharmaceuticals and fabrics.

Natural gas is transported in several ways: through pipelines in gaseous form; as liquefied natural gas (LNG) or compressed natural gas (CNG). LNG is the normal method for transporting the gas over very long distances, such as across oceans, while CNG is usually carried by tanker trucks over short distances. Pipelines are the preferred transport choice for long distances over land (and sometimes offshore), such as between Russia and central Europe. Local distribution companies also deliver natural gas to commercial and domestic users across utility networks within countries, regions and municipalities.

Regular maintenance of gas distribution systems is essential. Identifying and rectifying gas leaks is also an integral part of any maintenance programme, but it is notoriously difficult in many urban and industrial environments, as the gas pipes may be located underground, overhead, in ceilings, behind walls and bulkheads or in otherwise inaccessible locations such as locked buildings. Until recently, suspected leaks from these pipelines could lead to whole areas being cordoned off until the location of the leak was found.

Precisely because conventional gas detectors – such as those utilising catalytic combustion, flame ionisation or semiconductor technology – are not capable of remote gas detection and are therefore unable to detect gas leaks in hard to access pipelines, there has been a lot of recent research into ways of detecting methane gas remotely.

Remote Detection

Cutting edge technologies are now becoming available which allow the remote detection and identification of leaks with pinpoint accuracy. Hand-held units, for example, can now detect methane at distances of up to 100 metres, while aircraft-mounted systems can identify leaks half a kilometre away. These new technologies are transforming the way natural gas leaks are detected and dealt with.

Remote sensing is achieved using infrared laser absorption spectroscopy. Because methane absorbs a specific wavelength of infrared light, these instruments emit infrared lasers. The laser beam is directed to wherever the leak is suspected, such as a gas pipe or a ceiling. Because some of the light is absorbed by the methane, the light received back provides a measurement of absorption by the gas. A useful feature of these systems is the fact that the laser beam can penetrate transparent surfaces, such as glass or perspex, so it may be possible to test an enclosed space prior to entering it. The detectors measure the average methane gas density between the detector and target. Readings on the handheld units are given in ppm-m (a product of the concentration of methane cloud (ppm) and path length (m)). In this way, methane leaks can be quickly confirmed by pointing a laser beam towards the suspected leak or along a survey line, for example.

An important difference between the new technology and conventional methane detectors is that the new systems measure average methane concentration, rather than detecting methane at a single point – this gives a more accurate indication of the severity of the leak.

Applications for hand-held devices include:

  • Pipeline surveys
  • Gas plant
  • Industrial and commercial property surveys
  • Emergency call out
  • Landfill gas monitoring
  • Road surface survey

Municipal Distribution Networks

The benefits of remote technology for monitoring pipelines in urban settings are now being realised.

The ability of remote detection devices to monitor gas leaks from a distance makes them extremely useful tools in emergencies. Operators can stay away from potentially dangerous leak sources when checking the presence of gas in closed premises or confined spaces as the technology allows them to monitor the situation without actually gaining access. Not only is this process easier and quicker, but it is also safe. Moreover, it is not affected by other gases present in the atmosphere since the detectors are calibrated to only detect methane – therefore there is no danger of getting false signals, which is important in emergency situations.

The principle of remote detection is also applied when inspecting risers (the above-ground pipes carrying gas to the customers’ premises and normally running along the building outside walls). In this case, the operators point the device towards the pipe, following its route; they can do this from ground level, without having to use ladders or access the customers’ properties.

Hazardous Areas

In addition to detecting gas leaks from municipal distribution networks, explosion-proof, ATEX approved devices can be used in Zone 1 hazardous areas such as petrochemical plants, oil refineries, LNG terminals and vessels, as well as certain mining applications.

When inspecting an LNG/LPG underground tank, for example, an explosion-proof device would be required within 7.5 metres of the tank itself and one metre around the safety valve. Operators therefore need to be fully aware of these restrictions and equipped with the appropriate equipment type.

GPS Coordination

Some instruments now allow spot methane readings to be taken at various points around a site – such as an LNG terminal – automatically generating GPS tracking of the measurement readings and locations. This makes return trips for additional investigations far more efficient, while also providing a bona-fide record of confirmed inspection activity – often a prerequisite for regulatory compliance.

Aerial Detection

Moving beyond hand-held devices, there are also remote methane detectors which can be fitted to aircraft and which detect leaks from gas pipelines over hundreds of kilometres. These systems can detect methane levels at concentrations as small as 0.5ppm up to 500 metres away and include a real-time moving map display of gas concentrations as the survey is conducted.

The way these systems work is relatively simple. A remote detector is attached beneath the aircraft’s fuselage (usually a helicopter). As with the handheld device, the unit produces an infrared laser signal, which is deflected by any methane leakage within its path; higher methane levels result in more beam deflection. These systems also utilise GPS, so the pilot can follow a real-time moving map GPS route display of the pipeline, with a real-time display of aircraft path, gas leaks and concentration (in ppm) presented to the crew at all times. An audible alarm can be set for a desired gas concentration, allowing the pilot to approach for closer investigation.

Conclusion

The range of remote methane detection systems is increasing rapidly, with new technologies being developed all the time. All these devices, whether hand-held or fitted to aircraft, allow quick, safe and highly targeted identification of leaks – whether beneath the pavement, in a city or across hundreds of kilometres of Alaskan tundra. This not only helps prevent wasteful and costly emissions – it also ensures personnel working on or near the pipelines are not exposed to unnecessary danger.

Because the use of natural gas is increasing worldwide we foresee rapid technological advances in remote gas detection in applications as diverse as leak survey, transmission integrity, plant and facilities management, agriculture and waste management, as well as process engineering applications such as coke and steel production. Each of these areas have situations where access may be difficult, combined with the need to put personnel protection at the top of the agenda. Opportunities for remote methane detectors are therefore growing all the time.