You won’t find Crowcon sensors sleeping on the job

MOS (metal oxide semiconductor) sensors have been seen as one of the most recent solutions for tackling detection of hydrogen sulphide (H2S) in fluctuating temperatures from up to 50°C down to the mid-twenties, as well as humid climates such as the Middle East.

However, users and gas detection professionals have realised MOS sensors are not the most reliable detection technology. This blog covers why this technology can prove difficult to maintain and what issues users can face.

One of the major drawbacks of the technology is the liability of the sensor “going to sleep” when it doesn’t encounter gas for a period of time. Of course, this is a huge safety risk for workers in the area… no-one wants to face a gas detector that ultimately doesn’t detect gas.

MOS sensors require a heater to equalise, enabling them to produce a consistent reading. However, when initially switched on, the heater takes time to warm up, causing a significant delay between turning on the sensors and it responding to hazardous gas. MOS manufacturers therefore recommend users to allow the sensor to equilibrate for 24-48 hours before calibration. Some users may find this a hinderance for production, as well as extended time for servicing and maintenance.

The heater delay isn’t the only problem. It uses a lot of power which poses an additional issue of dramatic changes of temperature in the DC power cable, causing changes in voltage as the detector head and inaccuracies in gas level reading. 

As its metal oxide semiconductor name suggests, the sensors are based around semiconductors which are recognised to drift with changes in humidity- something that is not ideal for the humid Middle Eastern climate. In other industries, semiconductors are often encased in epoxy resin to avoid this, however in a gas sensor this coating would the gas detection mechanism as the gas couldn’t reach the semiconductor. The device is also open to the acidic environment created by the local sand in the Middle East, effecting conductivity and accuracy of gas read-out.

Another significant safety implication of a MOS sensor is that with output at near-zero levels of H2S can be false alarms. Often the sensor is used with a level of “zero suppression” at the control panel. This means that the control panel may show a zero read-out for some time after levels of H2S have begun to rise. This late registering of low-level gas presence can then delay the warning of a serious gas leak, opportunity for evacuation and the extreme risk of lives.

MOS sensors excel in reacting quickly to H2S, therefore the need for a sinter counteracts this benefit. Due to H2S being a “sticky” gas, it is able to be adsorbed onto surfaces including those of sinters, in result slowing down the rate at which gas reaches the detection surface.

To tackle the drawbacks of MOS sensors, we’ve revisited and improved on the electrochemical technology with our new High Temperature (HT) H2S sensor for XgardIQ. The new developments of our sensor allow operation of up to 70°C at 0-95%rh- a significant difference against other manufacturers claiming detection of up to 60°C, especially under the harsh Middle Eastern environments.

Our new HT H2S sensor has been proven to be a reliable and resilient solution for the detection of H2S at high temperatures- a solution that doesn’t fall asleep on the job!

Click here for more information on our new High Temperature (HT) H2S sensor for XgardIQ.

An ingenious solution to the problem of high temperature H2S

Due to extreme heat in the Middle East climbing up to 50°C in the height of summer, the necessity for reliable gas detection is critical. In this blog, we’re focusing on the requirement for detection of hydrogen sulphide (H2S)- a long running challenge for the Middle East’s gas detection industry.

By combining a new trick with old technology, we’ve got the answer to reliable gas detection for environments in the harsh Middle Eastern climate. Our new High Temperature (HT) H2S sensor for XgardIQ has been revisited and improved by our team of Crowcon experts by using a combination of two ingenious adaptations to its original design.

In traditional H2S sensors, detection is based on electrochemical technology, where electrodes are used to detect changes induced in an electrolyte by the presence of the target gas. However, high temperatures combined with low humidity causes the electrolyte to dry out, impairing sensor performance so that the sensor has to be replaced regularly; meaning high replacement costs, time and efforts.

Making the new sensor so advanced from its predecessor is its ability to retain the moisture levels within the sensor, preventing evaporation even in high temperature climates. The updated sensor is based on electrolytic gel, adapted to make it more hygroscopic and avoiding dehydration for longer.

As well as this, the pore in the sensor housing has been reduced, limiting the moisture from escaping. This chart indicated weight loss which is indicative of moisture loss. When stored at 55°C or 65°C for a year just 3% of weight is lost. Another typical sensor would lose 50% of its weight in 100 days in the same conditions.

For optimal leak detection, our remarkable new sensor also features an optional remote sensor housing, while the transmitter’s displays screen and push-button controls are positioned for safe and easy access for operators up to 15metres away.

 

The results of our new HT H2S sensor for XgardIQ speak for themselves, with an operating environment of up to 70°C at 0-95%rh, as well featuring a 0-200ppm and T90 response time of less than 30 seconds. Unlike other sensors for detecting H2S, it offers a life expectancy of over 24 months, even in tough climates like the Middle East.

The answer to the Middle East’s gas detection challenges fall in the hands of our new sensor, providing its users with cost-effective and reliable performance.

Click here for more information about the Crowcon HT H2S sensor.

Explosion hazards in inerted tanks and how to avoid them

Hydrogen sulphide (H2S) is known for being extremely toxic, as well as highly corrosive. In an inerted tank environment, it poses an additional and serious hazard combustion which, it is suspected, has been the cause of serious explosions in the past.

Hydrogen sulphide can be present in %vol levels in “sour” oil or gas. Fuel can also be turned ‘sour’ by the action of sulphate-reducing bacteria found in sea water, often present in cargo holds of tankers. It is therefore important to continue to monitor the level of H2S, as it can change, particularly at sea. This H2S can increase the likelihood of a fire if the situation is not properly managed.

Tanks are generally lined with iron (sometimes zinc-coated). Iron rusts, creating iron oxide (FeO). In an inerted headspace of a tank, iron oxide can react with H2S to form iron sulphide (FeS). Iron sulphide is a pyrophore; which means that it can spontaneously ignite in the presence of oxygen

Excluding the elements of fire

A tank full of oil or gas is an obvious fire hazard under the right circumstances. The three elements of fire are fuel, oxygen and an ignition source. Without these three things, a fire can’t start. Air is around 21% oxygen. Therefore, a common means to control the risk of a fire in a tank is to remove as much air as possible by flushing the air out of the tank with an inert gas, such as nitrogen or carbon dioxide. During tank unloading, care is taken that fuel is replaced with inert gas rather than air. This removes the oxygen and prevents fire starting.

By definition, there is not enough oxygen in an inerted environment for a fire to start. But at some point, air will have to be let into the tank – for maintenance staff to safety enter, for example. There is now the chance for the three elements of fire coming together. How is it to be controlled?

  • Oxygen has to be allowed in
  • There may be present FeS, which the oxygen will cause to spark
  • The element that can be controlled is fuel.

If all the fuel has been removed and the combination of air and FeS causes a spark, it can’t do any harm.

Monitoring the elements

From the above, it is obvious how important it is to keep track of all the elements that could cause a fire in these fuel tanks. Oxygen and fuel can be directly monitored using an appropriate gas detector, like Gas-Pro TK. Designed for these specialist environments, Gas-Pro TK automatically copes with measuring a tank full of gas (measured in %vol) and a tank nearly empty of gas (measured in %LEL). Gas-Pro TK can tell you when oxygen levels are low enough to be safe to load fuel or high enough for staff to safely enter the tank. Another important use for Gas-Pro TK is to monitor for H2S, to allow you judge the likely presence of the pryophore, iron sulphide.

Hydrogen Sulphide Hazards

Next in our series of short videos is our hydrogen sulphide detection factoid.

Where is H2S found?

Hydrogen sulphide is a significant danger to workers in many industries. It is a by-product of industrial processes, such as petroleum refining, mining, paper mills, and iron smelting. It is also a common product of the biodegradation of organic matter; pockets of H2S can collect in rotting vegetation, or sewage itself, and be released when disturbed.

Continue reading “Hydrogen Sulphide Hazards”

Confined spaces still deadly places

 Despite the significant amount that has been published about the dangers of Confined Space Entry (CSE), recent evidence in the news suggests that people still do not fully understand the risks or take appropriate precautions. In the news this week, Dorset farm owner has been fined for serious safety failings after one of his workers died following exposure to toxic gases escaping from a tank during tank maintenance.

Continue reading “Confined spaces still deadly places”

Monitoring and Analysis of Landfill Gases

As recycling becomes more common, use of landfill is reducing, but it is still an important means of waste disposal. For example, 2012-13 figures from Defra (department of the environment, food and rural affairs) for England show that 8.51 million tonnes, or 33.9%, of waste collected by local authorities went to landfill.

Continue reading “Monitoring and Analysis of Landfill Gases”

Hydrogen Sulphide: toxic and deadly – Chris explains more about this dangerous gas

Many of you will have come across hydrogen sulphide (H2S). If you have ever cracked a rotten egg the distinctive smell is H2S.

H2S is a hazardous gas that is found in many work environments, and even at low concentrations it is toxic. It can be a product of man-made process or a by-product of natural decomposition. From offshore oil production to sewerage works, petrochemical plants to farms and fishing vessels, H2S presents a real hazard to workers.

Continue reading “Hydrogen Sulphide: toxic and deadly – Chris explains more about this dangerous gas”