Guldminedrift: Hvilken gasdetektion har jeg brug for? 

Hvordan udvindes guld?

Guld er et sjældent stof, der udgør 3 dele pr. milliard af jordens ydre lag, og det meste af verdens tilgængelige guld kommer fra Australien. Guld er ligesom jern, kobber og bly et metal. Der er to primære former for guldminedrift, herunder åben og underjordisk minedrift. Ved åben minedrift anvendes jordflytningsudstyr til at fjerne affaldsbjergarter fra malmkassen ovenover, hvorefter der foretages minedrift fra den resterende substans. Denne proces kræver, at affald og malm slås med store mængder for at bryde affaldet og malmen i størrelser, der er egnede til håndtering og transport til både affaldsdepoter og malmknusere. Den anden form for guldminedrift er den mere traditionelle underjordiske minedriftsmetode. Her transporterer lodrette skakte og spiraltunneler arbejdere og udstyr ind og ud af minen, hvor der sørges for ventilation og transport af affaldsbjergarter og malm til overfladen.

Gasdetektion i minedrift

I forbindelse med gasdetektion er processen med at sundhed og sikkerhed i minerne har udviklet sig betydeligt i løbet af det sidste århundrede, fra den grove brug af metanvagtvægstests, syngende kanariefugle og flammesikkerhed til de moderne gasdetektionsteknologier og -processer, som vi kender dem. Det sikres, at den korrekte type detektionsudstyr anvendes, uanset om fastmonteret eller bærbar, før man går ind i disse rum. Korrekt anvendelse af udstyret sikrer, at gasniveauerne overvåges nøjagtigt, og at arbejdstagerne advares om farlige koncentrationer i atmosfæren ved først givne lejlighed.

Hvad er gasfarerne, og hvad er farerne?

Farerne De, der arbejder i mineindustrien, står over for adskillige potentielle arbejdsrisici og sygdomme og muligheden for dødelig skade. Derfor er det vigtigt at forstå de miljøer og farer, som de kan blive udsat for.

Ilt (O2)

Ilt (O2), der normalt er til stede i luften med 20,9 %, er afgørende for menneskelivet. Der er tre hovedårsager til, at ilt udgør en trussel mod arbejdstagere i mineindustrien. Disse omfatter iltmangel eller iltberigelse, da for lidt ilt kan forhindre den menneskelige krop i at fungere, hvilket kan føre til, at arbejdstageren mister bevidstheden. Medmindre iltniveauet kan genoprettes til et gennemsnitligt niveau, risikerer arbejdstageren at dø. En atmosfære er mangelfuld, når koncentrationen af O2 er mindre end 19,5 %. Derfor er et miljø med for meget ilt lige så farligt, da det udgør en stærkt forøget risiko for brand og eksplosion. Dette anses for at være tilfældet, når koncentrationen af O2 er over 23,5 %.

Kulilte (CO)

I nogle tilfælde kan der være høje koncentrationer af kulilte (CO). Dette kan forekomme i forbindelse med husbrande, og brandvæsenet risikerer derfor at blive udsat for CO-forgiftning. I dette miljø kan der være op til 12,5 % CO i luften, som når kulilte stiger til loftet sammen med andre forbrændingsprodukter, og når koncentrationen når op på 12,5 volumenprocent, vil det kun føre til én ting, nemlig en flashover. Det er, når det hele antændes som et brændstof. Bortset fra de genstande, der falder ned på brandvæsenet, er dette en af de mest ekstreme farer, de står over for, når de arbejder inde i en brændende bygning. Da CO er så svært at identificere, dvs. en farveløs, lugtløs, smagløs og giftig gas, kan det tage tid, før man opdager, at man har fået en CO-forgiftning. Virkningerne af CO kan være farlige, fordi CO forhindrer blodsystemet i effektivt at transportere ilt rundt i kroppen, især til vitale organer som hjerte og hjerne. Høje doser af CO kan derfor forårsage døden som følge af kvælning eller mangel på ilt til hjernen. Ifølge statistikker fra sundhedsministeriet er det mest almindelige tegn på CO-forgiftning hovedpine, idet 90 % af patienterne rapporterer dette som symptom, mens 50 % rapporterer kvalme og opkastninger samt svimmelhed. Forvirring/ændringer i bevidstheden og svaghed tegner sig for henholdsvis 30 % og 20 % af rapporterne.

Hydrogensulfid (H2S)

Svovlbrinte (H2S) er en farveløs, brandfarlig gas med en karakteristisk lugt af rådne æg. Der kan forekomme hud- og øjenkontakt. Nervesystemet og det kardiovaskulære system påvirkes dog mest af svovlbrinte, hvilket kan føre til en række symptomer. Enkeltstående eksponering for høje koncentrationer kan hurtigt medføre åndedrætsbesvær og død.

Svovldioxid (SO2)

Svovldioxid (SO2) kan forårsage en række skadelige virkninger på åndedrætsorganerne, især lungerne. Det kan også forårsage hudirritation. Hudkontakt med (SO2) forårsager stikkende smerter, rødme af huden og blærer. Hudkontakt med komprimeret gas eller væske kan forårsage forfrysninger. Øjenkontakt medfører rindende øjne, og i alvorlige tilfælde kan der opstå blindhed.

Metan (KAP4)

Metan (CH4) er en farveløs, letantændelig gas, som primært består af naturgas. Høje niveauer af (CH4) kan reducere mængden af ilt i luften, hvilket kan resultere i humørsvingninger, sløret tale, synsproblemer, hukommelsestab, kvalme, opkastning, rødme i ansigtet og hovedpine. I alvorlige tilfælde kan der forekomme ændringer i vejrtrækning og hjertefrekvens, balanceproblemer, følelsesløshed og bevidstløshed. Selv om eksponering i en længere periode kan medføre dødelig udgang, hvis eksponeringen er af længere varighed.

Brint (H2)

Brintgas er en farveløs, lugtfri og smagløs gas, som er lettere end luft. Da den er lettere end luft, betyder det, at den svæver højere end vores atmosfære, hvilket betyder, at den ikke findes naturligt, men i stedet skal skabes. Brint udgør en brand- eller eksplosionsrisiko samt en risiko for indånding. Høje koncentrationer af denne gas kan forårsage et iltfattigt miljø. Personer, der indånder en sådan atmosfære, kan opleve symptomer som hovedpine, ringen i ørerne, svimmelhed, døsighed, bevidstløshed, kvalme, opkastning og depression af alle sanser.

Ammoniak (NH3)

Ammoniak (NH3) er et af de mest anvendte kemikalier globalt set, som produceres både i menneskekroppen og i naturen. Selv om det dannes naturligt (NH3) er ætsende, hvilket udgør et sundhedsproblem. Høj eksponering i luften kan medføre øjeblikkelig forbrænding af øjne, næse, hals og luftveje. I alvorlige tilfælde kan det føre til blindhed.

Andre gasrisici

Selv om hydrogencyanid (HCN) ikke er persistent i miljøet, kan forkert opbevaring, håndtering og affaldshåndtering udgøre en alvorlig risiko for menneskers sundhed og påvirke miljøet. Cyanid forstyrrer den menneskelige vejrtrækning på celleniveau, hvilket kan forårsage akutte virkninger, herunder hurtig vejrtrækning, rysten og kvælning.

Eksponering for dieselpartikler kan forekomme i underjordiske miner som følge af dieseldrevet mobilt udstyr, der anvendes til boring og transport. Selv om kontrolforanstaltningerne omfatter brug af dieselbrændstof med lavt svovlindhold, vedligeholdelse af motorer og ventilation, omfatter de sundhedsmæssige konsekvenser en øget risiko for lungekræft.

Produkter, der kan hjælpe dig med at beskytte dig selv

Crowcon leverer en række gasdetekteringsudstyr, herunder både bærbare og faste produkter, som alle er velegnede til gasdetektering i mineindustrien.

Hvis du vil vide mere, kan du besøge vores brancheside her.

Hvordan fungerer elektrokemiske sensorer? 

Elektrokemiske sensorer er de mest anvendte i diffusionstilstand, hvor gas i det omgivende miljø trænger ind gennem et hul i cellens overflade. Nogle instrumenter anvender en pumpe til at tilføre luft eller gasprøver til sensoren. Der er monteret en PTFE-membran over hullet for at forhindre vand eller olie i at trænge ind i cellen. Sensorernes rækkevidde og følsomhed kan varieres i udformningen ved at anvende forskellige størrelser huller. Større huller giver højere følsomhed og opløsning, mens mindre huller reducerer følsomheden og opløsningen, men øger rækkevidden.

Fordele

Elektrokemiske sensorer har flere fordele.

  • Kan være specifik for en bestemt gas eller damp i del-per-million-området. Graden af selektivitet afhænger dog af sensortypen, målgassen og den koncentration af gassen, som sensoren er beregnet til at detektere.
  • Høj gentagelses- og nøjagtighedsgrad. Når sensoren er kalibreret til en kendt koncentration, giver den en nøjagtig aflæsning af en målgas, der er gentagelig.
  • Ikke modtagelig for forgiftning af andre gasser, og tilstedeværelsen af andre omgivende dampe vil ikke forkorte eller forkorte sensorens levetid.
  • Billigere end de fleste andre gasdetektionsteknologier, f.eks. IR eller PID teknologier. Elektrokemiske sensorer er også mere økonomiske.

Problemer med krydsfølsomhed

Krydsfølsomhed opstår, når en anden gas end den gas, der overvåges/detekteres, kan påvirke den aflæsning, der gives af en elektrokemisk sensor. Dette medfører, at elektroden i sensoren reagerer, selv om målgassen ikke er til stede, eller at den pågældende gas på anden måde giver en unøjagtig aflæsning og/eller alarm for den pågældende gas. Krydsfølsomhed kan forårsage flere typer af unøjagtige aflæsninger i elektrokemiske gasdetektorer. Disse kan være positive (angivelse af tilstedeværelsen af en gas, selv om den faktisk ikke er til stede, eller angivelse af et niveau af den pågældende gas, der er højere end den virkelige værdi), negative (en reduceret reaktion på målgassen, der antyder, at den er fraværende, selv om den er til stede, eller en aflæsning, der antyder, at der er en lavere koncentration af målgassen, end der er), eller den interfererende gas kan forårsage inhibering.

Faktorer, der påvirker den elektrokemiske sensors levetid

Der er tre hovedfaktorer, der påvirker sensorens levetid, herunder temperatur, eksponering for ekstremt høje gaskoncentrationer og fugtighed. Andre faktorer omfatter sensorelektroder og ekstreme vibrationer og mekaniske stød.

Ekstreme temperaturer kan påvirke sensorens levetid. Producenten angiver et driftstemperaturområde for instrumentet: typisk -30˚C til +50˚C. Sensorer af høj kvalitet vil dog kunne modstå midlertidige udsving ud over disse grænser. Kortvarig (1-2 timer) eksponering ved 60-65˚C for H2S- eller CO-sensorer (f.eks.) er acceptabel, men gentagne hændelser vil resultere i fordampning af elektrolytten og forskydninger i basislinjen (nul) og langsommere respons.

Eksponering for ekstremt høje gaskoncentrationer kan også forringe sensorens ydeevne. Elektrokemisk sensorer testes typisk ved at blive udsat for op til ti gange deres konstruktionsgrænse. Sensorer, der er fremstillet af katalysatormateriale af høj kvalitet, bør kunne modstå sådanne eksponeringer uden ændringer i kemien eller tab af ydeevne på lang sigt. Sensorer med lavere katalysatorbelastning kan lide skade.

Den største indflydelse på sensorens levetid er luftfugtighed. Den ideelle miljøbetingelse for elektrokemiske sensorer er 20˚Celsius og 60 % RH (relativ luftfugtighed). Når den omgivende luftfugtighed stiger til over 60 % RH, vil vand blive absorberet i elektrolytten og forårsage fortynding. I ekstreme tilfælde kan væskeindholdet stige 2-3 gange, hvilket potentielt kan resultere i lækage fra sensorhuset og derefter gennem stifterne. Under 60 % RH begynder vandet i elektrolytten at blive afhydreret. Responstiden kan blive betydeligt forlænget, når elektrolytten dehydreres. Sensorelektroder kan under usædvanlige forhold blive forgiftet af forstyrrende gasser, der adsorberes på katalysatoren eller reagerer med den og skaber biprodukter, som hæmmer katalysatoren.

Ekstreme vibrationer og mekaniske stød kan også skade sensorer ved at bryde de svejsninger, der binder platinelektroderne, forbindelsesstrimlerne (eller ledningerne i nogle sensorer) og stifterne sammen.

"Normal" forventet levetid for elektrokemiske sensorer

Elektrokemiske sensorer til almindelige gasser som kulilte eller svovlbrinte har en driftslevetid typisk opgivet til 2-3 år. Mere eksotiske gassensorer som f.eks. hydrogenfluorid kan have en levetid på kun 12-18 måneder. Under ideelle forhold (stabil temperatur og luftfugtighed på omkring 20˚C og 60 % RH) uden forekomst af forurenende stoffer er det kendt, at elektrokemiske sensorer kan fungere i mere end 4000 dage (11 år). Periodisk eksponering for målgassen begrænser ikke levetiden for disse små brændselsceller: sensorer af høj kvalitet har en stor mængde katalysatormateriale og robuste ledere, som ikke udtømmes af reaktionen.

Produkter

Da elektrokemiske sensorer er mere økonomiske, Vi har en række bærbare produkter og faste produkter der bruger denne type sensor til at detektere gasser.

Hvis du vil vide mere, besøg vores tekniske side for at få flere oplysninger.

Hvad er der så vigtigt ved mine skærmes måleområde?

Hvad er et måleområde for en monitor?

Gasovervågning måles normalt i PPM-området (dele pr. million), procentdel af LEL (nedre eksplosiv grænse), hvilket gør det muligt for sikkerhedschefer at sikre, at deres operatører ikke udsættes for potentielt skadelige niveauer af gasser eller kemikalier. Gasovervågning kan udføres eksternt for at sikre, at området er rent, før en arbejdstager kommer ind i området, samt overvåge gas gennem en permanent fast enhed eller kropsbåren bærbar enhed for at opdage eventuelle lækager eller farlige områder i løbet af arbejdsskiftet. 

Hvorfor er gasmonitorer vigtige, og hvad er intervallerne for mangler eller berigelser?

Der er tre hovedårsager til, at der er behov for monitorer; det er vigtigt at opdage iltmangel eller berigelse, da for lidt ilt kan forhindre menneskekroppen i at fungere, hvilket fører til, at arbejderen mister bevidstheden. Medmindre iltniveauet kan genoprettes til et normalt niveau, er arbejdstageren i risiko for potentiel død. En atmosfære anses for at være mangelfuld, når koncentrationen af O2 er mindre end 19,5%. Derfor er et miljø, der har for meget ilt i sig, lige så farligt, da dette udgør en stærkt øget risiko for brand og eksplosion, dette overvejes, når koncentrationsniveauet på O2 er over 23,5%. 

Monitorer er påkrævet, når giftige gasser er til stede, som kan forårsage betydelig skade på den menneskelige krop. Hydrogensulfid (H2S) er et klassisk eksempel på dette. H2S afgives af bakterier, når det nedbryder organisk materiale, fordi denne gas er tungere end luft, det kan fortrænge luft, der fører til potentiel skade på personer til stede og er også en bredspektret giftig gift. 

Derudover har gasmonitorer evnen til at detektere brændbare gasser. Farer, der kan forebygges ved hjælp af en gasmonitor, er ikke kun ved indånding, men de er en potentiel fare på grund af forbrænding. gasmonitorer med en LEL-afstandssensor registrerers og ersler mod brændbare gasser.  

Hvorfor er de vigtige, og hvordan fungerer de?

Måling eller måleområde er det samlede område, som enheden kan måle under normale forhold. Udtrykket normal betyder ingen overtryksgrænser (OPL) og inden for maksimalt arbejdstryk (MWP).  Disse værdier findes normalt på produktets websted eller specifikationsdataark. Måleområdet kan også beregnes ved at identificere forskellen mellem URL'en (Upper Range Limit) og LRL (Lower Range Limit) på enheden. Når man forsøger at bestemme detektorens rækkevidde, identificerer den ikke det område af kvadratoptagelser eller inden for en fast radius af detektoren, men identificerer i stedet udbyttet eller diffusionen af det område, der overvåges. Processen sker, når sensorerne reagerer på de gasser, der trænger gennem skærmens membraner. Derfor har enhederne evnen til at opdage gas, der er i umiddelbar kontakt med skærmen. Dette understreger betydningen af at forstå måleområdet for gasdetektorer og fremhæve deres betydning for sikkerheden for de arbejdstagere, der er til stede i disse miljøer. 

Er der nogen produkter, der er tilgængelige?

Crowcon tilbyder en række bærbare monitorer. Gas-Pro Den bærbare multigasdetektor tilbyder detektering af op til 5 gasser i en kompakt og robust løsning. Den har et letlæseligt topmonteret display, der gør den nem at bruge og optimal til gasdetektering i lukkede rum. En valgfri intern pumpe, der aktiveres med flowpladen, gør det nemt at teste før indtrængen og gør det muligt at bruge Gas-Pro enten i pumpe- eller diffusionstilstand.

Den T4 bærbare 4-i-1-gasdetektor giver effektiv beskyttelse mod 4 almindelige gasfarer: kulilte, hydrogensulfid, brændbare gasser og iltsvind. Multigasdetektoren T4 kommer nu med forbedret detektion af pentan, hexan og andre langkædede kulbrinter. Den giver dig compliance, robusthed og lave ejeromkostninger i en brugervenlig løsning. T4 indeholder en lang række effektive funktioner, der gør den daglige brug nemmere og mere sikker.

Den Gasman bærbare enkeltgasdetektor er kompakt og let, men alligevel fuldt ud robust til de hårdeste industrielle miljøer. Den er enkel at betjene med en enkelt knap og har et stort, letlæseligt display for gaskoncentrationen samt akustiske, visuelle og vibrerende alarmer.

Crowcon tilbyder også et fleksibelt udvalg af faste gasdetekteringsprodukter, der kan detektere brandfarlige, giftige og iltgasser, rapportere deres tilstedeværelse og aktivere alarmer eller tilhørende udstyr. Vi bruger en række måle-, beskyttelses- og kommunikationsteknologier, og vores faste detektorer er blevet bevist i mange vanskelige miljøer, herunder olie- og gasefterforskning, vandbehandling, kemiske anlæg og stålværker. Disse faste gasdetektorer anvendes i mange applikationer, hvor pålidelighed, pålidelighed og mangel på falske alarmer er medvirkende til effektiv og effektiv gasdetektering. Disse omfatter inden for bilindustrien og luft- og rumfartssektoren, på videnskabelige og forskningsmæssige faciliteter og i medicinske, civile eller kommercielle anlæg med høj udnyttelse. 

Du vil ikke finde Crowcon sensorer sover på jobbet

MOS (metaloxid halvleder) sensorer er blevet set som en af de nyeste løsninger til håndtering af påvisning af hydrogensulfid (H2S) i svingende temperaturer fra op til 50 ° C ned til midten af tyverne, samt fugtige klimaer som Mellemøsten.

Brugere og fagfolk inden for gasdetektion har imidlertid indset, at MOS-sensorer ikke er den mest pålidelige detektionsteknologi. Denne blog dækker, hvorfor denne teknologi kan vise sig vanskeligt at vedligeholde, og hvilke problemer brugerne kan stå over for.

En af de største ulemper ved teknologien er ansvaret for sensoren "kommer til at sove", når det ikke støder på gas i en periode. Selvfølgelig er dette en enorm sikkerhedsrisiko for arbejdstagere i området. . . ingen ønsker at stå over for en gasdetektor, der i sidste ende ikke opdager gas.

MOS-sensorer kræver en varmelegeme for at udligne, så de kan producere en ensartet aflæsning. Men når ovnen først er tændt, tager det tid at varme op, hvilket medfører en betydelig forsinkelse mellem at tænde sensorerne og reagere på farlig gas. MOS-producenter anbefaler derfor brugerne at lade sensoren ekvilibrere i 24-48 timer før kalibrering. Nogle brugere kan finde dette en hindring for produktionen, samt forlænget tid til service og vedligeholdelse.

Varmeapparatet forsinkelse er ikke det eneste problem. Det bruger en masse strøm, som udgør et yderligere spørgsmål om dramatiske temperaturændringer i DC-strømkablet, forårsager ændringer i spændingen som detektoren hoved og unøjagtigheder i gas niveau læsning. 

Som dens metaloxid halvleder navn antyder, sensorerne er baseret på halvledere, som er anerkendt for at drive med ændringer i luftfugtigheden- noget, der ikke er ideelt for det fugtige mellemøstlige klima. I andre brancher, halvledere er ofte indkapslet i epoxy harpiks for at undgå dette, men i en gassensor denne belægning ville gasdetektering mekanisme som gassen ikke kunne nå halvlederen. Enheden er også åben for det sure miljø skabt af det lokale sand i Mellemøsten, der påvirker ledningsevne og nøjagtighed af gasaflæsning.

En anden væsentlig sikkerhedspåståelse af en MOS-sensor er, at med output på næsten nul niveauer af H2S kan være falske alarmer. Ofte bruges sensoren med et niveau af "nul undertrykkelse" ved kontrolpanelet. Det betyder, at kontrolpanelet kan vise en nul-udlæsning i nogen tid efter niveauer af H2S er begyndt at stige. Denne sene registrering af gastilstedeværelse på lavt niveau kan derefter forsinke advarslen om en alvorlig gaslækage, mulighed for evakuering og den ekstreme risiko for liv.

MOS sensorer udmærker sig ved at reagere hurtigt på H2S, derfor er behovet for en sinter modvirker denne fordel. På grund af H2S er en "klæbrig" gas, det er i stand til at blive adsorberet på overflader, herunder af sinters, hvilket resulterer bremse den hastighed, hvormed gas når detektionsoverfladen.

For at tackle ulemperne ved MOS-sensorer har vi revideret og forbedret den elektrokemiske teknologi med vores nye højtemperatur (HT)H2S-sensortil XgardIQ. Den nye udvikling af vores sensor muliggør drift på op til 70°C ved 0-95%rh - en betydelig forskel i forhold til andre producenter, der hævder detektion på op til 60°C, især i de barske miljøer i Mellemøsten.

Vores nye HT H2S sensor har vist sig at være en pålidelig og robust løsning til påvisning af H2S ved høje temperaturer - en løsning, der ikke falder i søvn på jobbet!

Klik her for mere information om vores nye højtemperatur (HT)H2S-sensortil XgardIQ.

En genial løsning på problemet med høj temperatur H2S

På grund af ekstrem varme i Mellemøsten, der klatrer op til 50 °C i sommerhøjden, er nødvendigheden af pålidelig gasdetektion kritisk. I denne blog fokuserer vi på kravet om påvisning af hydrogensulfid (H2S) - en lang kørende udfordring for Mellemøstens gasdetektionsindustri.

Ved at kombinere et nyt trick med gammel teknologi har vi svaret på pålidelig gasdetektering til miljøer i det barske klima i Mellemøsten. Vores nye højtemperatur (HT)H2S-sensortil XgardIQ er blevet revideret og forbedret af vores team af Crowcon-eksperter ved hjælp af en kombination af to geniale tilpasninger til det oprindelige design.

I traditionelleH2S-sensorerer detektion baseret på elektrokemisk teknologi, hvor elektroder anvendes til at detektere ændringer, der induceres i en elektrolyt ved tilstedeværelsen af målgassen. Høje temperaturer kombineret med lav luftfugtighed får imidlertid elektrolytten til at tørre ud, hvilket forringer sensorens ydeevne, så sensoren skal udskiftes regelmæssigt, hvilket medfører store udskiftningsomkostninger, tid og kræfter.

At gøre den nye sensor så avanceret fra sin forgænger er dens evne til at bevare fugtniveauet i sensoren, hvilket forhindrer fordampning selv i højtemperaturklimaer. Den opdaterede sensor er baseret på elektrolytisk gel, tilpasset til at gøre den mere hygroskopisk og undgå dehydrering i længere tid.

Derudover er poren i sensorhuset blevet reduceret, hvilket begrænser fugten fra at undslippe. Dette diagram viste vægttab, som er tegn på fugttab. Når den opbevares ved 55 °C eller 65 °C i et år, går kun 3% af vægten tabt. En anden typisk sensor ville tabe 50% af sin vægt i 100 dage i de samme forhold.

For optimal lækageregistrering har vores bemærkelsesværdige nye sensor også et valgfrit fjernsensorhus, mens senderens skærme og trykknapknapper er placeret for sikker og nem adgang for operatører op til 15 meter væk.

 

Resultaterne af vores nye HTH2S-sensortil XgardIQ taler for sig selv, med et driftsmiljø på op til 70°C ved 0-95%rh, samt en responstid på 0-200ppm og T90 på mindre end 30 sekunder. I modsætning til andre sensorer til detektering afH2Shar den en forventet levetid på over 24 måneder, selv i barske klimaer som Mellemøsten.

Svaret på Mellemøstens udfordringer med gasdetektion ligger i hænderne på vores nye sensor, hvilket giver brugerne omkostningseffektiv og pålidelig ydeevne.

Klik her for mere information om Crowcon HT H2S senseller.

Eksplosionsfarer i inerterede tanke, og hvordan man undgår dem

Hydrogensulfid (H2S) er kendt for at være ekstremt giftigt, såvel som meget ætsende. I et inerted tankmiljø udgør det en yderligere og alvorlig fareforbrænding, som det mistænkes for tidligere at have været årsag til alvorlige eksplosioner.

Hydrogensulfid kan være til stede i %vol.-niveauer i "sur" olie eller gas. Brændstof kan også vendes "sur" ved virkningen af sulfat-reducerende bakterier findes i havvand, ofte til stede i lastrum af tankskibe. Det er derfor vigtigt fortsat at overvåge niveauet af H2S, da det kan ændre sig, især til søs. Denne H2S kan øge sandsynligheden for brand, hvis situationen ikke håndteres korrekt.

Tanke er generelt foret med jern (nogle gange zink-belagt). Jernrust, der skaber jernoxid (FeO). I en inaktiv headspace af en tank, kan jernoxid reagere med H2S til at danne jernsulfid (FeS). Jernsulfid er en pyrophore; hvilket betyder, at det spontant kan antændes i nærværelse af ilt

Bortset fra brandelementer

En tank fuld af olie eller gas er en åbenlys brandfare under de rette omstændigheder. De tre elementer af brand er brændstof, ilt og en antændelseskilde. Uden disse tre ting, kan en brand ikke starte. Luften er omkring 21% ilt. Derfor er et almindeligt middel til at kontrollere risikoen for brand i en tank at fjerne så meget luft som muligt ved at skylle luften ud af tanken med en inert gas, såsom nitrogen eller kuldioxid. Under tankaflæsning tages der omhu for, at brændstof erstattes med inert gas i stedet for luft. Dette fjerner ilten og forhindrer brand i at starte.

Per definition er der ikke nok ilt i et inerted miljø for en brand til at starte. Men på et tidspunkt skal luften lukkes ind i tanken – for at vedligeholdelsespersonalet kan komme i sikkerhed, for eksempel. Der er nu mulighed for, at de tre elementer af ild kan mødes. Hvordan skal det kontrolleres?

  • Ilt skal være tilladt i
  • Der kan være til stede FeS, som ilten vil medføre at gnist
  • Det element, der kan styres, er brændstof.

Hvis alt brændstoffet er blevet fjernet, og kombinationen af luft og FeS forårsager en gnist, kan det ikke gøre nogen skade.

Overvågning af elementerne

Af ovenstående fremgår det tydeligt, hvor vigtigt det er at holde styr på alle de elementer, der kan forårsage en brand i disse brændstoftanke. Ilt og brændstof kan overvåges direkte ved hjælp af en passende gasdetektor, som Gas-Pro TK. Gas-Pro TK er designet til disse specialmiljøer og klarer automatisk at måle en tank fuld af gas (målt i %vol) og en tank næsten tom for gas (målt i %LEL). Gas-Pro TK kan fortælle dig, hvornår iltniveauet er lavt nok til, at det er sikkert at fylde brændstof på, eller højt nok til, at personalet kan gå sikkert ind i tanken. En anden vigtig anvendelse af Gas-Pro TK er at overvåge forH2S, så du kan bedømme den sandsynlige tilstedeværelse af pryoforen, jernsulfid.

Farerne ved hydrogensulfid

Næste i vores serie af korte videoer er vores hydrogensulfid afsløring factoid.

Hvor er H2S fundet?

Hydrogensulfid er en betydelig fare for arbejdstagere i mange brancher. Det er et biprodukt af industrielle processer, såsom olieraffinering, minedrift, papirfabrikker og jernsmeltning. Det er også et almindeligt produkt af bionedbrydning af organisk materiale; lommer på H2S kan samle sig i rådnende vegetation, eller spildevand selv, og frigives, når forstyrret.

Fortsæt med at læse "Hydrogensulfid hazards"

Lukkede rum stadig dødbringende steder

På trods af den store mængde af oplysninger, der er blevet offentliggjort om farerne ved adgang til lukkede rum (CSE), tyder nylige oplysninger i nyhederne på, at folk stadig ikke fuldt ud forstår risiciene eller tager passende forholdsregler. I nyhederne i denne uge, Landbrugsejer fra Dorset har fået en bøde for alvorlige sikkerhedsbrister, efter at en af hans ansatte døde efter eksponering for giftige gasser, der slipper ud af en tank under vedligeholdelse af en tank.

Fortsæt med at læse "Lukkede rum stadig dødbringende steder"

Overvågning og analyse af deponeringsgasser

Efterhånden som genanvendelse bliver mere almindelig, reduceres brugen af deponeringsanlæg, men det er stadig et vigtigt middel til bortskaffelse af affald. F.eks. viser tal for 2012-13 fra Defra (departementet for miljø, fødevarer og landdistrikter) for England, at 8,51 mio. ton eller 33,9 % af det affald, der indsamles af lokale myndigheder, gik til deponering.

Fortsæt læsning "Overvågning og analyse af deponeringsgasser"