Confined Space Entry 

Confined Space Entry (CSE) is a location that is substantially enclosed although not always entirely, and where serious injury can occur from hazardous substances or conditions within the space or nearby such as a lack of oxygen. As they are dangerous, it must be noted that any entry to confined spaces must be the only and final option in order to carry out work. Confined Spaces Regulations 1997. Approved Code of Practice, Regulations and guidance is for employees that work in Confined Spaces, those who employ or train such people and those who represent them. 

Confined Space Identification 

HSE classify Confined Spaces as any place, including any chamber, tank, vat, silo, pit, trench, pipe, sewer, flue, well or other similar space in which, by virtue of its enclosed nature, there arises a reasonably foreseeable specified risk, as outlined above. 

Although, most confined spaces are easy to identify, identification is sometimes required as a confined space is not necessarily enclosed on all sides. Or exclusive to a small and/or difficult to work in space – grain silos and ships’ holds, can be very large. Although, these areas may not be that difficult to get in or out of, some have several entrances/exits, where others have large openings or are apparently easy to escape from. Some confined spaces (such as those used for spray painting in car repair centres) are used regularly by people in the course of their work. 

There may be instances where a space itself may not be defined as a confined space, however, while work is ongoing, and until the level of oxygen recovers (or the contaminants have dispersed by ventilating the area), it is classified as a confined space. Scenarios include welding that would consume some of the available breathable oxygen, a spray booth during paint spraying, using chemicals for cleaning purposes which can add volatile organic compounds (VOCs) or acidic gases, or an area subjected to significant rust which has reduced available oxygen to dangerous levels. 

What are the Rules and Regulations for Employers? 

Under the new OSHA (Occupational Safety and Health Administration) standards, the obligation of the employer will depend on what type of employer they are. These include the controlling contractor, the host employer, the entry employer or sub-contractor.  

The controlling contractor is the main point of contact for any information about PRCS on site. 

The Host employer: The employer who owns or manages the property where the construction work is taking place. 

Employer can’t rely solely on the emergency services for rescue. A dedicated service must be ready to act in the event of an emergency. The arrangements for emergency rescue, required under regulation 5 of the confined space regulations, must be suitable and sufficient. If necessary, equipment to enable resuscitation procedures to be carried out should be provided. The arrangements should be in place before any person enters or works in a confined space. 

The Controlling contractor: The employer who has overall responsibility for construction at the worksite. 

The Entry employer or Sub-Contractor: Any employer who decides that an employee it directs will enter a permit-required confined space. 

Employees have the responsibility to raise concern such as helping highlight any potential workplace risks, ensuring that health and safety controls are practical and increasing the level of commitment to working in a safe and healthy way. 

The Risks and Hazards: VOCs 

A confined space that contains certain hazardous conditions may be considered a permit-required confined space under the standard. Permit-required confined spaces can be immediately dangerous to operator’s lives if they are not properly identified, evaluated, tested and controlled. Permit-required confined space can a defined as a confined space where there is a risk of one (or more) of the following: 

  • Serious injury due to fire or explosion 
  • Loss of consciousness arising from increased body temperature 
  • Loss of consciousness or asphyxiation arising from gas, fume, vapour, or lack of oxygen   
  • Drowning from an increase in the level of a liquid
  • Asphyxiation arising from a free-flowing solid or being unable to reach a respirable environment due to being trapped by such a free-flowing solid 

These arise from the following hazards: 

  • Flammable substances and oxygen enrichment 
  • Excessive heat 
  • Toxic gas, fume or vapours 
  • Oxygen deficiency
  • Ingress or pressure of liquids 
  • Free-flowing solid materials 
  • Other hazards (such as exposure to electricity, loud noise or loss of structural integrity of the space) VOCs. 

Intrinsically Safe and suitable products for Confined Space Safety 

These products are Certified to meet local Intrinsically Safe Standards. 

The Gas-Pro portable multi gas detector offers detection of up to 5 gases in a compact and rugged solution. It has an easy-to-read top mount display making it easy to use and optimal for confined space gas detection. An optional internal pump, activated with the flow plate, takes the pain out of pre-entry testing, and allows Gas-Pro to be worn either in pumped or diffusion modes. 

Gas-Pro TK offers the same gas safety benefits as the regular Gas-Pro, while offering Tank Check mode which can auto-range between %LEL and %Volume for inerting applications. 

T4 portable 4-in-1 gas detector provides effective protection against 4 common gas hazards: carbon monoxide, hydrogen sulphide, flammable gases, and oxygen depletion. The T4 multi gas detector now comes with improved detection of pentane, hexane, and other long chain hydrocarbons. 

Tetra 3 portable multi gas monitor can detect and monitor the four most common gases (carbon monoxide, methane, oxygen, and hydrogen sulphide), but also an expanded range: ammonia, ozone, sulphur dioxide, H2 filtered CO (for steel plants). 

What are the Dangers of Carbon Monoxide? 

Carbon monoxide (CO) is a colourless, odourless, tasteless, poisonous gas produced by incomplete burning of carbon-based fuels, including gas, oil, wood, and coal. It is only when fuel does not burn fully that excess CO is produced, which is poisonous. When CO enters the body, it stops the blood from bringing oxygen to cells, tissues, and organs. CO is poisonous as you cannot see it, taste it, or smell it but CO can kill quickly without warning.  

Regulation  

The Health and Safety Executive (HSE) prohibit worker exposure to more than 20ppm (parts per million) during an 8-hour long term exposure period and 100ppm (parts per million) during a 15 minute short term exposure period. 

OSHA standards prohibit worker exposure to more than 50 parts of CO gas per million parts of air averaged during an 8-hour time period. The 8-hour PEL for CO in maritime operations is also 50 ppm. Maritime workers, however, must be removed from exposure if the CO concentration in the atmosphere exceeds 100 ppm. The peak CO level for employees engaged in roll-on roll-off operations during cargo loading and unloading) is 200 ppm. 

What are the dangers? 

CO volume (parts per million (ppm) Physical Effects

200 ppm Headache in 2–3 hours  

400 ppm Headache and nausea in 1–2 hours, life threatening within 3 hours.  

800 ppm Can cause seizures, severe headaches and vomiting in under an hour, unconsciousness within 2 hours.  

1,500 ppm Can cause dizziness, nausea, and unconsciousness in under 20 minutes; death within 1 hour  

6,400 ppm Can cause unconsciousness after two to three breaths: death within 15 minutes 

Around 10 to 15% of people who obtain serve CO poisoning go on to develop long-term complications. These include brain damage, vision and hearing loss, Parkinson’s disease, and coronary heart disease.   

What are the health implications? 

Due to the characteristics of CO being so hard to identify, i.e., colourless, odourless, tasteless, poisonous gas, it may take time for you to realise that you have CO poisoning. The effects of CO can be dangerous.  

Implication to Health  Physical Effects 
Oxygen Deprivation  CO prevents the blood system from effectively carrying oxygen around the body, specifically to vital organs such as the heart and brain. High doses of CO, therefore, can cause death from asphyxiation or lack of oxygen to the brain.  
Central Nervous system and Heart Problems  As CO prevents the brain from receiving sufficient levels of oxygen it has a knock-on effect with the heart, brain, and central nervous system. Symptoms including headaches, nausea, fatigue, memory loss and disorientation.  

Increased levels of CO in the body go on to cause lack of balance, heart problems, comas, convulsions and even death. Some of those who are affected may experience rapid and irregular heartbeats, low blood pressure and arrhythmias of the heart. Cerebral edemas caused because of CO poisoning are especially threatening, this is because they can result in the brain cells being crushed, thereby affecting the whole nervous system. 

Respiratory System  As the body struggles to distribute air around the body as a result of carbon monoxide due to the deprivation of blood cells of oxygen. Some patients will experience a shortness of breath, especially when undertaking strenuous activities.  

Every-day physical and sporting activities will take more effort and leave you feeling more exhausted than usual. These effects can worsen over time as your body’s power to obtain oxygen becomes increasingly compromised.  

Over time, both your heart and lungs are put under pressure as the levels of carbon monoxide increase in the body tissues. As a result, your heart will try harder to pump what it wrongly perceives to be oxygenated blood from your lungs to the rest of your body. Consequently, the airways begin to swell causing even less air to enter the lungs. With long-term exposure, the lung tissue is eventually destroyed, resulting in cardiovascular problems and lung disease. 

Chronic Exposure  Chronic exposure can have extremely serious long-term effects, depending on the extent of poisoning. In extreme cases, the section of the brain known as the hippocampus may be harmed. This part of the brain is accountable for the development of new memories and is particularly vulnerable to damage.  

Whilst those who suffer from long-term effects of carbon monoxide poisoning recover with time, there are cases in which some people suffer permanent effects. This may occur when there has been enough exposure to result in organ and brain damage.  

Unborn Babies  Since foetal haemoglobin mixes more readily with CO than adult haemoglobin, the baby’s carboxy haemoglobin levels become higher than the mothers. Babies and children whose organs are still maturing are at risk of permanent organ damage.  

Additionally, young children and infants breathe faster than adults and have a higher metabolic rate, therefore, they inhale up to twice as much air as adults, especially when sleeping, which heightens their exposure to CO. 

 How to meet compliance?

The best way to protect yourself from the hazards of CO is be wearing a high quality, portable CO gas detector. 

Clip SGD is designed for use in hazardous areas whilst offering reliable and durable fixed life span monitoring in a compact, lightweight and maintenance free device. Clip SGD has a 2-year life and is available for hydrogen sulphide (H2S), carbon monoxide (CO) or oxygen (O2). The Clip SDG personal gas detector is designed to withstand the harshest industrial working conditions and delivers industry leading alarm time, changeable alarm levels and event logging as well as user-friendly bump test and calibration solutions.  

Gasman with specialist CO sensor is a rugged, compact single gas detector, designed for use in the toughest environments. Its compact and lightweight design makes it the ideal choice for industrial gas detection. Weighing just 130g, it is extremely durable, with high impact resistance and dust/water ingress protection, loud 95 dB alarms, a vivid red/ blue visual warning, single-button control and an easy-to-read, backlit LCD display to ensure clear viewing of gas level readings, alarm conditions and battery life. Data and event logging are available as standard, and there is a built-in 30-day advance warning when calibration is due.  

Balloon gas safety: The dangers of Helium and Nitrogen 

Balloon gas is a mixture of helium and air. Balloon gas is safe when used correctly but you should never deliberately inhale the gas as it is an asphyxiant and can result in health complications. Like other asphyxiants, the helium in balloon gas occupies some of the volume normally taken by air, preventing that air being used to keep fires going or to keep bodies functioning.  

There are other asphyxiants used in industrial applications. For example, use of nitrogen has become almost indispensable in numerous industrial manufacturing and transport processes. While the uses of nitrogen are numerous, it must be handled in accordance with industrial safety regulations. Nitrogen should be treated as a potential safety hazard regardless of the scale of the industrial process in which it is being employed. Carbon dioxide is commonly used as an asphyxiant, especially in fire suppression systems and some fire extinguishers. Similarly, helium is non-flammable, non-toxic and doesn’t react with other elements in normal conditions. However, knowing how to properly handle helium is essential, as a misunderstanding could lead to errors in judgement which could result in a fatal situation as helium is used in many everyday situations. As for all gases, proper care and handling of helium containers is vital. 

What are the dangers? 

When you inhale helium knowingly or unknowingly it displaces air, which is partly oxygen. This means that as you inhale, oxygen that would normally be present in your lungs has been replaced with helium. As oxygen plays a role in many functions of your body, including thinking and moving, too much displacement poses a health risk. Typically, inhaling a small volume of helium will have a voice-altering effect, however, it may also cause a bit of dizziness and there is always the potential for other effects, including nausea, light headedness and/or a temporary loss of consciousness – all the effects of oxygen deficiency. 

  • As with most asphyxiants, nitrogen gas, like helium gas, is colourless and odourless. In the absence of nitrogen detecting devices, the risk of industrial workers being exposed to a dangerous nitrogen concentration is significantly higher. Also whilst helium often rises away from the working area due to its low density, nitrogen remains, spreading out from the leak and not dispersing quickly. Hence systems operating on nitrogen developing undetected leaks is a major safety regulatory concern. Occupational health preventive guidelines attempt to address this increased risk using additional equipment safety checks. The problem is low oxygen concentrations affecting personnel. Initially symptoms include mild shortness of breath and cough, dizziness and perhaps restlessness, followed by rapid breathing chest pain and confusion, with prolonged inhalation resulting in high blood pressure, bronchospasm and pulmonary edema. 
  • Helium can cause these exact same symptoms if it is contained in a volume and can’t escape. And in each case a complete replacement of the air with the asphyxiant gas causes rapid knockdown where a person just collapses where they stand resulting in a variety of injuries. 

Balloon Gas Safety Best Practice 

In accordance with OSHA guidelines, mandatory testing is required for confined industrial spaces with the responsibility being placed on all employers. Sampling atmospheric air within these spaces will help to determine its suitability for breathing. Tests to be carried out on the sampling air most importantly include oxygen concentrations, but also combustible gas presence and tests for toxic vapours to identify build ups of those gases. 

Regardless of the duration of stay, OSHA requires all employers to provide an attendant just outside a permit-required space whenever personnel are working within. This person is required to constantly monitor the gaseous conditions within the space and call for rescuers if the worker inside the confined space becomes unresponsive. It is vital to note that at no time should the attendant attempt to enter the hazardous space to conduct a rescue unassisted. 

In restricted areas forced draft air circulation will significantly reduce the build-up of helium, nitrogen or other asphyxiant gas and limit the chances of a fatal exposure. While this strategy can be used in areas with low nitrogen leak risks, workers are prohibited from entering pure nitrogen gas environments without using appropriate respiratory equipment. In these cases, personnel must use appropriate artificially supplied air equipment. 

Seasonal Gas Dangers

When it comes to gas safety there’s no off-season, although it is important to know that there is such a thing as seasonal gas safety. When temperatures rise and fall, or the rain falls in deluge, it can have unique impacts on your gas appliances. To help you get a better understanding on seasonal gas safety, here is everything you need to know about key challenges throughout the year.  

Gas safety on holiday 

When on holiday, the last thing on your mind is gas safety, however, it’s crucial that you keep yourself safe. Whether it’s a long summer holiday or a winter weekend getaway are you packing a carbon monoxide monitor in your suitcase? If not, you should be. Gas safety on holiday is just as important as it is at home, this is because when you’re on holiday you have less knowledge or control over the state of any gas appliances. 

Although, there isn’t much difference between gas safety in a caravan or gas safety on boats, gas safety when camping in a tent is different. Gas camping stoves, gas heaters (such as table and patio heaters), and even solid fuel BBQs can produce carbon monoxide (CO) thereby leading to possible poisoning. Therefore, if they are brought into a tent, a caravan or any other enclosed space, during or after use, they can emit harmful CO putting anyone around them in danger. 

It’s also important to remember that gas safety regulations in other countries may differ from those outside the UK. While you can’t be expected to know what’s legal and what’s not everywhere you go, you can keep you and others around you safe by following some simple tips. 

Tips for gas safety on holiday 

  • Ask if the gas appliances in your accommodation have been serviced and safety checked. 
  • Take an audible carbon monoxide alarm with you.
  • When you arrive, the appliances may not work in the same way as those you have at home. If no instructions are provided, then contact your holiday rep or accommodation owner for assistance if you’re unsure.
    • Be aware of the signs of unsafe gas appliances 
    • Black marks and stains around the appliance 
    • Lazy orange or yellow flames instead of crisp blue ones 
    • High levels of condensation in your accommodation
  • Never use gas cookers, stoves or BBQs for heating, and ensure they have adequate ventilation when in use.  

BBQ safety

Summer is a time for being outdoors and enjoying long evenings. Come rain or shine we light up our BBQs with usually the only worries being whether it will rain, or the sausages are fully cooked through. Gas safety isn’t just something for the home, or industrial environments, BBQs need special attention to ensure they’re safe.  

Carbon monoxide is a gas that its health risks are widely known with many of us installing detectors in our homes and businesses. However, the association of carbon monoxide is associated with our BBQs is unknown. If the weather is poor, we may decide to barbeque in the garage doorway or under a tent or canopy. Some of us may even bring our BBQs into the tent after use.  These can all be potentially fatal as the carbon monoxide collects in these confined areas. It must be noted that the cooking area should be well away from buildings and be well ventilated with fresh air, otherwise you are at risk of carbon monoxide poisoning. Knowing the signs of carbon monoxide poisoning is vital – Headaches, Nausea, Breathlessness, Dizziness, Collapse or Loss of consciousness. 

Equally with a propane or butane gas canister, we store in our garages, sheds and even our homes unaware that there is a risk of a potentially deadly combination of an enclosed space, a gas leak and a spark from an electrical device.  All of which could cause an explosion. 

Gas safety in winter

When the cold weather sets in, gas boilers and gas are fired up for the first time in several months, to keep us warm. However, this increased usage can put extra pressure on appliances and can result in them breaking down. Therefore, preparing for winter by ensuring gas appliances – including boilers, warm air heaters, cookers and fires – have been regularly safety checked and maintained by a qualified Gas Safe registered engineer, who carry gas detectors 

What to do if you suspect a gas leak

If you can smell gas or think there could be a gas leak in a property, boat or caravan, it’s important to act fast. A gas leak poses a risk of fire or even explosion. 

You should: 

  • Extinguish any naked flames to stop the chance of fire or explosion.
  • Turn off the gas at the meter if possible (and safe to do so).
  • Open windows to allow ventilation and ensure the gas dissipates.
  • Evacuate the area immediately to prevent risk to life.
  • Inform your holiday representative or accommodation owner immediately or equivalent.
  • Seek medical attention if you feel unwell or show signs of carbon monoxide poisoning.

Carbon monoxide poisoning symptoms

The signs and symptoms of carbon monoxide poisoning are often mistaken for other illnesses, such as food poisoning or flu. Symptoms include:

  • Headache
  • Dizziness
  • Breathlessness
  • Nausea or feeling sick
  • Collapse
  • Loss of consciousness

Anyone who suspects they are suffering from carbon monoxide poisoning should immediately go outside into the fresh air and seek urgent medical attention. 

Personal gas detectors 

The Clip SDG personal gas detector is designed to withstand the harshest industrial working conditions and delivers industry leading alarm time, changeable alarm levels and event logging as well as user-friendly bump test and calibration solutions. 

Gasman with specialist CO sensor is a rugged, compact single gas detector, designed for use in the toughest environments. Its compact and lightweight design makes it the ideal choice for industrial gas detection. 

Detecting dangers in dairy: What gases should you be aware of? 

Global demand for dairy continues to increase in large part due to population growth, rising incomes and urbanisation. Millions of farmers worldwide tend approximately 270 million dairy cows to produce milk. Throughout the dairy farm industry there are a variety of gas hazards that pose a risk to those working in the dairy industry.  

What are the dangers workers face in the dairy industry?

Chemicals

Throughout the dairy farm industry, chemicals are used for variety of tasks including cleaning, applying various treatments such as vaccinations or medications, antibiotics, sterilising and spraying. If these chemicals and hazardous substances are not used or stored correctly, this can result in serious harm to the worker or the surrounding environment. Not only can these chemicals cause illness, but there is also a risk of death if a person is exposed. Some chemicals can be flammable and explosive whilst others are corrosive and poisonous. 

There are several ways to manage these chemical hazards, although the main concern should be in implementing a process and procedure. This procedure should ensure all staff are trained in the safe use of chemicals with records being maintained. As part of the chemical procedure, this should include a chemical manifest for tracking purposes. This type of inventory management allows for all personal to have access to Safety Data Sheets (SDS) as well as usage and location records. Alongside this manifest, there should be consideration for the review of current operation.  

  • What is the current procedure?  
  • What PPE is required?  
  • What is the process for discarding out of date chemicals and is there is a substitute chemical that could pose less of a risk to your workers? 

Confined Spaces

There are numerous circumstances that could require a worker to enter a confined space, including feed silos, milk vats, water tanks and pits in the dairy industry. The safest way to eliminate a confined space hazard, as mentioned by many industry bodies, is to employ a safe design. This will include the removal of any need to enter a confined space. Although, this may not be realistic and from time to time, cleaning routines need to take place, or a blockage may occur, however, there is a requirement to ensure there is the correct procedures to address the hazard. 

Chemical agents when used in a confined space can increase the risk of suffocation with gases pushing out oxygen. One way you can eliminate this risk is by cleaning the vat from the outside using a high-pressure hose. If a worker does need to enter the confined space, check that the correct signage is in place since entry and exit points will be restricted. You should consider isolation switches and check that your staff understand the correct emergency rescue procedure if something were to happen. 

Gas Hazards

Ammonia (NH3) is found in animal waste and slurry spreading on farming and agricultural land. It is characteristically a colourless gas with a pungent smell that arises through the decomposition of nitrogen compounds in animal waste. Not only is it harmful to human health but also harmful to livestock wellbeing, due to its ability to cause respiratory diseases in livestock, and eye irritation, blindness, lung damage, alongside nose and throat damage and even death in humans. Ventilation is a key requirement in preventing health issues, as poor ventilation heightens the damage caused by this gas.  

Carbon dioxide (CO2) is naturally produced in the atmosphere; although, levels are increased through farming and agricultural processes. CO2, is colourless, odourless, and is emitted from agricultural equipment, crop and livestock production and other farming processes. CO2 can congregate areas, such as waste tanks and silos. This results in oxygen in the air to be displaced and increasing the risk of suffocation for animals and humans.  Sealed silos, waste and grain storage spaces are specifically dangerous as CO2 can accumulate here and lead to them being unsuitable for humans without an external air supply. 

Nitrogen dioxide (NO2) is one of a group of highly reactive gases known as oxides of nitrogen or nitrogen oxides (NOx). At worst, it can cause sudden death when consumed even from short term exposure. This gas can cause suffocation and is emitted from silos following specific chemical reactions of plant material. It is recognisable by its bleach-like smell and its properties tend to create a red-brown haze. As it gathers above certain surfaces it can run into areas with livestock through silo chutes, and therefore poses a real danger to humans and animals in the surrounding area. It can also affect lung function, cause internal bleeding, and ongoing respiratory problems. 

When should gas detectors be used?

Gas detectors provide added value anywhere on dairy farms and around slurry silos, but above all: 

  • When and where slurry is being mixed 
  • During pumping and bringing out slurry
  • On and around the tractor during slurry mixing or spreading 
  • In the stable during maintenance work on slurry pumps, slurry scrapers and the like 
  • Near and around small openings and cracks in the floor, e.g., around milking robots 
  • Low to the ground in poorly ventilated corners and spaces (H2S is heavier than air and sinks to the floor) 
  • In slurry silos 
  • In slurry tanks 

Products that can help to protect yourself 

Gas detection can be provided in both fixed and portable forms. Installation of a fixed gas detector can benefit a larger space to provide continuous area and staff protection 24 hours a day. However, a portable detector can be more suited for worker’s safety. 

To find out more on the dangers in agriculture and farming, visit our industry page for more information. 

Intrinsic Safety – What does it mean? 

Intrinsic safety is an explosion prevention technique used to ensure safe operation of electrical equipment in a hazardous area. This technique uses a low-energy signalling technique that reduces the energy within the equipment to below that required to initiate an explosion, whilst maintaining an energy level this is an be used for its operation.  

What is a hazardous area? 

A hazardous or explosion-prone relates to an environment that has vast amounts of flammable substances such as combustible particles, gases, vapor. Hazardous industrial areas include oil refineries, mining, distilleries and chemical plants. The main safety issue in these industrial scenarios is that of flammable vapours and gases. This is because when they are mix with oxygen within the air, they can establish an explosion-prone environment. Food processing factories, grain handling facilities, recycling operations, and even flour mills generate combustible dust, which is why these are classed as too hazardous locations. Hazardous places are classified in terms of zones on the basis of the frequency and duration of the occurrence of an explosive atmosphere. Areas subject to flammable gas hazards are classified as either Zone 0, Zone 1 or Zone 2. 

How does it work? 

Intrinsic safety prevents sparks and heat from being generated from any electrical equipment, devices or instruments that otherwise ay have initiated an explosion in a hazardous area. Hazardous spaces may belong, but are not limited to, to the following: petrochemical refineries, mines, agriculture grain storage, wastewater, distilling, pharmaceutical, brewing, and utilities. 

Intrinsic safety is achieved with the use of a Zener Diodes which limits voltage, resistors that limit the current and a fuse to cut off electricity. Equipment or devices that may be made intrinsically safe must first be approved for use in an intrinsically safe system through a competent authority, such as the National Fire Protection Agency (NFPA), the Canadian Standards Association (CSA), Underwriters Laboratories (UL), Factory Mutual (FM), National Electric Code (NEC), and the Instrument Society of Measurement and Control (ISA). 

The advantages of Intrinsic Safety 

The main advantage is that it provides a solution to all problems that occur in a hazardous area regarding equipment. It prevents the cost and bulk of explosion proof enclosures, with additional cost savings as a result of the ability to use standard instrumentation cables. Additionally, the maintenance and diagnostic work can be performed without shutting down production and ventilating the work area. 

Levels of protection  

Intrinsic safety relates to three levels of protection, ‘ia’, ‘ib’ and ‘ic’ that aim to balance the probability of an explosive atmosphere, assessing the probability of whether that is an ignition capable situation that may occur. 

‘ia’  

Offers the highest level of protection and any equipment that is given this level is generally considered adequately safe for use in the most hazardous locations (Zone 0) with two faults.  

‘ib’  

This level is considered adequately safe with one fault is considered safe for use in less frequently hazardous areas (Zone 1).  

‘ic’  

This level is given for ‘normal operation’ with a unity factor of safety is generally acceptable in infrequently hazardous areas (Zone 2). 

Level of protection 
Countable faults 
ATEX Category 
Normal Zone of use 
ia 2 1 0
ib 1 2 1
ic 0 3 2

 

To note, although it is normal for a whole system to be allocated a level of protection, it is also possible for different parts of the system to have different levels of protection.  

Why do Gas Certifications matter?

Who Classifies Gas Certificates?

One of the most significant concerns in an industrial workplace is the potential risk of fire or/and explosion. However, there are directives that set standards in which aim to control explosive atmospheres. ATEX (ATmosphere EXplosibles) is the name commonly given to two European Directives for controlling explosive environments. IECEX (International Electrotechnical Commission for Explosive Atmospheres) is the certification that all electrical devices are required to go through by the International Electrotechnical Commission to ensure that they meet a minimum safety standard that will determine whether they can be used in hazardous or explosive environments. For the US Underwriters Limited (UL) is a safety organisation who provide products that are to be sold into the marketplace with authentication that are safe for use. Similarly, the Canadian National Standards (CSA) provide products placed in the market or put into service with a safety certification displaying that they are fit for use. However, The Safety integrity level (SIL) is the level of risk-reduction provided by a safety function, or to specify a target level of risk reduction. The certificates provided by both ATEX and Sil are what operators rely on in order to prevent fires and explosions but also to keep all those in industrial workplaces safe. 

Workplace Hazards

There are too many workplace hazards to count, however, a hazardous location is stated as an area in which combustible or flammable substance is or has the potential to be in attendance. Hazardous locations are specified by the type of combustible hazard and the probability of it being present. These gradings are determined by classifications set by the National Electric Code (NEC) in the United States and the International Electrochemical Commissions (IEC) internationally. These are defined in two ways; either Class/Division system in Northern America or Zones/Groups internationally.  

Class and Divisions

Divisions: 

Division 1: There is a likelihood the hazard is present during normal operating conditions 

Division 2: The hazard is present during abnormal conditions (i.e., In the event of a spill or leak)  

Classes: 

Class 1Gas 

Class 2Dust 

Class 3Fibres  

Zones and Groups 

Zones: identify the possibility for a hazard to be present 

Zone 0: The hazard is in attendance continuously and for a prolonged period of time 

Zone 1: There is a chance that the hazard is in attendance but at normal operating  conditions 

Zone 2: The hazard is not likely in attendance in normal conditions for an extended period of  time 

Groups: Identify the particular type of hazard 

Group 1: Mining Industry hazard specific 

Group 2: Have a group identifying the hazard is gaseous in nature 

A: Methane, propane, and other similar gases 

B: Ethylene and gases or those that pose a similar hazard risk 

C: Acetylene, hydrogen or similar hazards 

Group 3: Dusts and other groups by size of the particle and type of material 

Understanding the Certification Logos

The logos located on the equipment identify who or what association has tested and assessed the equipment, ensuring its safety based on set standards. Many associations will certify equipment as being explosion proof, clarifying that any ignition will be contained within the device and will not pose a threat to the outside environment. This action is intrinsically safe, thereby stopping the device from creating a spark that may lead to an explosion in a hazardous environment.  

Why Certificates are important

Although it is hard to identify all classification, to ensure that equipment has been certified safe, it is essential to look for familiar logos as a primary sign the equipment is safe and won’t pose a threat to the environment. Certificates allow for easy visual for the operator to not only ensure that the devices work correctly but also protect all those in the hazardous environment its set to measure.